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Chapter 1

Basic Design Principles in the

Construction of Upwind Finite
Volume Methods

Abstract: Finite volume methods are a class of discretization schemes that have proven
highly successful in approximating the solution of a wide variety of conservation law
systems. They are extensively used in fluid mechanics and have seen great popularity in
other areas such as meteorology, electromagnetics, models of biological processes, semi-
conductor device simulation, financial options pricing and many other engineering areas
governed by conservative systems that can be written in integral control volume form.
This lecture reviews elements of the foundation and analysis of modern finite vol-
ume methods. Throughout this lecture, specific attention is given to scalar nonlinear
hyperbolic conservation laws and the development of high order accurate schemes for dis-
cretizing them. When compared to other discretization methods such as finite elements
or finite differences, the primary attraction of finite volume methods is numerical robust-
ness through the obtention of discrete maximum (minimum) principles, applicability on
very general unstructured meshes, and the intrinsic local conservation properties of the
resulting schemes. A key tool in the design and analysis of finite volume schemes suit-
able for non-oscillatory discontinuity capturing is discrete maximum principle analysis.
Consequently, the emphasis of this lecture concerns maximum principle analysis and a
discussion of how finite volume schemes are constructed based on this concept.

1.1 Finite volume (FV) methods for nonlinear con-
servation laws

This lecture reviews selected elements of the foundation and analysis of modern finite
volume methods. Finite volume methods are a class of discretization schemes that have
proven highly successful in approximating the solution of a wide variety of conservation
law systems such as those occurring in fluid mechanics, meteorology, electromagnetics,
models of biological processes, semi-conductor device simulation, financial options pricing
and many other engineering areas governed by conservative systems that can be written
in integral control volume form. In the remainder of this lecture, basic design principles
used in the construction of upwind finite volume methods are presented. In a few rep-
resentative cases, theorems are given with more or less complete proofs to illustrate the



typical mathematical tools and techniques employed in finite volume algorithm design
and analysis.
We begin by considering the scalar Cauchy initial value problem

Ou+V-flu)y = 0 in R x R" | (1a)
u(z,0) = wue(w) in R%. (1b)

Here u(x,t) : R xR* — R denotes the dependent solution variable, f(u) € C*(R) denotes
the flux function, and up(z) : R? — R the initial data. In the finite volume method, the
computational domain, Q C RY, is first tessellated into a collection of non overlapping
control volumes that completely cover the domain. Let 7 denote a tessellation of the
domain © with control volumes T € T such that UpesrT = Q. Let hy denote a length
scale associated with each control volume T, e.g. hy = diam(T). For two distinct control
volumes 7; and T} in 7T, the intersection is either an oriented edge (2-D) or face (3-D) e;;
with oriented normal v;; or else a set of measure at most d — 2. In each control volume,
an integral conservation law statement is then imposed.

Definition 1.1.1 (Integral conservation law) An integral conservation law asserts that
the rate of change of the total amount of a substance with density u in a fixed control vol-
ume T is equal to the flux [ of the substance through the boundary 0T

9 udr+ [ f(u)-dv=0 . (2)
ot Jr oT

This integral conservation law statement is readily obtained upon spatial integration of the
divergence equation (1a) in the region 7" and application of the divergence theorem. The
choice of control volume tessellation is flexible in the finite volume method. For example,

e storage location

.
/// control volume

a. Cell-centered b. Vertex-centered

Figure 1.1: Control volume variants used in the finite volume method: (a) cell-centered
and (b) vertex-centered control volume tessellation.

Fig. 1.1 depicts a 2-D triangle complex and two typical control volume tessellations
(among many others) used in the finite volume method. In the cell-centered finite volume
method shown in Fig. 1.1a, the triangles themselves serve as control volumes with solution
unknowns stored on a per triangle basis. In the wvertex-centered finite volume method
shown in Fig. 1.1b, control volumes are formed as a geometric dual to the triangle
complex and solution unknowns stored on a per triangulation vertex basis.



1.1.1 Godunov finite volume discretizations

Fundamental to finite volume methods is the introduction of the control volume cell

average for each T; € T
),
u=— [ uwdr . 3

For stationary meshes, the finite volume method can be interpreted as producing an
evolution equation for cell averages

0 0
a/Tj“dx— Tyl (4)

Godunov [God59] pursued this interpretation in the discretization of the gas dynamic
equations by assuming piecewise constant solution representations in each control volume
with value equal to the cell average. However, the use of piecewise constant representations
renders the numerical solution multivalued at control volume interfaces thereby making
the calculation of a single solution flux at these interfaces ambiguous. The second aspect
of Godunov’s scheme and subsequent variants was the idea of supplanting the true flux
at interfaces by a numerical flux function, g(u,v) : R x R — R, a Lipschitz continuous
function of the two interface states v and v. A single unique numerical flux was then
calculated from an exact or approximate local solution of the Riemann problem in gas
dynamics posed at these interfaces. Figure 1.2 depicts a representative 1-D solution
profile in Godunov’s method. For a given control volume T = [xj,l/g,xjﬂ/Q], Riemann
problems are solved at each interface z;41/2. For example, at the interface z;,/, the
Riemann problem counterpart of (la-1b)

Orwjr1/2(&,7) + O f(wjs1/2(6,7)) =0  in R x RT
for wjy1/2(€,7) € R with initial data

w;, €<
wj+1/2(§, 0) = {ujjrl lff >0

is solved either exactly or approximately. From this local solution, a single unique nu-
merical flux at ;.1 /, is computed from g(u;, ;1) = f(w;j11/2(0, R")). This construction
utilizes the fact that the solution of the Riemann problem at £ = 0 is a constant for all
time 7 > 0.

In higher space dimensions, the flux integral appearing in (2) is similarly approximated
by

fw)-dva D gil(ug, w) (5)
ot} Ve, €OT;

where the numerical flux is assumed to satisfy the properties:

e (Conservation) This property insures that fluxes from adjacent control volumes shar-
ing a mutual interface exactly cancel when summed. This is achieved if the numerical
flux satisfies the identity

gik(u,v) = —grj(v,u) . (6a)

e (Consistency) Consistency is obtained if the numerical flux with identical state
arguments reduces to the true flux of that same state, i.e.

gﬂ4u,u)::/f_j(u)-dy. (6b)
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Figure 1.2: 1-D control volume, T; = [x;_1/2, Zj11/2], depicting Godunov’s interface Rie-
mann problems, wji1/2(&, 7), from piecewise constant interface states.

Combining (4) and (5) yields perhaps the simplest finite volume scheme in semi-
discrete form. Let V;? denote the space of piecewise constants, i.e.

V) ={v|vlr € x(T), VT € T} (7)
with x(7") a characteristic function in the control volume 7.

Definition 1.1.2 (Semi-discrete finite volume method) The semi-discrete finite vol-
ume approzimation of (la-1b) utilizing continuous in time solution representation, t €
[0, 7], and piecewise constant solution representation in space, up(t) € V2, such that

1
u;(t) = W/T up(x,t) do
J J

with witial data )
u;(0) = W/T ug(x) dx
J j

and numerical flux function g;.(u;, uy) is given by the following system of ordinary dif-
ferential equations
1 + ! E ( )=0 VI; €T (8)
— U + — ge(ug, ug) = ; :
dt 7 |7}| Gjk\Uj, U ) j

Vej€0Tj

This system of ordinary differential equations can be marched forward using a variety of
explicit and implicit time integration methods. Let u} denote a numerical approximation
of the cell average solution in the control volume T} at time ¢" = nAt. A particularly
simple time integration method is the forward Euler scheme

n+1 )
d ~ U uj

ati T T TAY

thus producing the fully-discrete finite volume form.

Definition 1.1.3 (Fully-discrete finite volume method) The fully-discrete finite vol-
ume approximation of (1a-1b) for the time slab interval [t",t" + At] utilizing the piecewise
constant solution representation in space, uf € V| such that

i),
u! = — | up(x) dz
! |jj’7| T} "

5



with wnitial data .
0
u; = — [ wo(z) dx
T /T]-

and numerical flux function gjk(u?, uy) is given by the following fully-discrete system

At
=ul —— Y gu(ulup) , VI;ET . 9)

751 Ve, 0T}

n+1

Uj

Monotone schemes

Unfortunately, the numerical flux conditions (6a) and (6b) are insufficient to guarantee
convergence to entropy satisfying weak solutions and additional numerical flux restric-
tions are necessary. Two classes of numerical fluxes that guarantee such convergence for
piecewise constant numerical solution data are monotone fluzes and E-fluzes. Specifically,
Harten [HHL76] provides the following result concerning convergence of the fully-discrete
one-dimensional scheme to weak solutions which was later generalized to (9) and irregular
grids by Cockburn et al. [CCL94].

Theorem 1.1.4 (Monotone schemes and weak solutions,[HHL76]) Consider a 1-
D finite volume discretization of (1a-1b) with 2k + 1 stencil on a uniformly spaced mesh
in both time and space with corresponding mesh spacing parameters At and Ax

U?+1 = H](U,Jzk, ey Uy ,Uj,k)
" t

= uj — E(%’H/? — gj-1/2) (10)

and consistent numerical fluz of the form
gj+1/2 = g(uj+ka ceey Ujgr, Ugy - o ,Uj—k+1)

that is monotone in the sense

OH;

—L >0, V||<k. (11)

Oujyy

Then as At and Az tend to zero with At/Ax = constant, u} converges boundedly almost
everywhere to u(x,t), an entropy satisfying weak solution of (1a-1b).

The monotonicity condition (11) motivates the introduction of Lipschitz continuous mono-
tone fluxes satisfying

aL(]j+1/2 . .

= > f = 12
o 01 J (12a)

a!]j+1/2 . .

=0 if ! 12b
ou, <01 #J (12b)

together with a CFL (Courant-Friedrichs-Levy) like condition

_ At (Ognpp Ogi-1p2) o
Ax Ou, Ou, -

so that (11) is satisfied. Some examples of monotone fluxes for (1a) include

6



e (Godunov flux)
min  f(u) if u; <wujpy

G ) u€lujuj]
i1z = max f(u) if uj > ujy (13)
UE U uj41]
e (Lax-Friedrichs flux)
LF _ 1 1 !
9ivre = 5 (flug) + flujen)) = 5 Sup ]|f ()] (uj1 = uy) (14)
ue UjyUj41

E-flux schemes

A more general class of numerical fluxes was introduced and analyzed by Osher [Osh84]
that still guarantees convergence to weak entropy solutions when used in (9) or (10).
These fluxes are called E-fluxes, gj11/2 = ¢%(Ujik, -, Wjs1, g, ..., Uj_g41), due to the
relationship to Olienick’s well-known E-condition which characterizes entropy satisfying

discontinuities. E-fluxes satisfy the inequality
B
i1y — f(0)
DHE TN <0, Vu € [ug,uip] (15)
Uj+1 = Uy

E-fluxes can be characterized by their relationship to Godunov’s flux. Specifically, E-
fluxes are precisely those fluxes such that

E G .
Jiv12 < Gipe i ujp <wy (16a)
9;'E+1/2 > ggg+1/2 if wjp1 >y (16b)
Viewed another way, note that any numerical flux can be written in the form

1

(f (ug) + fuj41)) = 5Q(ujer — uy) (17)

where QQ(-) denotes a viscosity for the scheme. When written in this form, E-fluxes are
those fluxes that contribute at least as much viscosity as Godunov’s flux, i.e.

DO | =

gj+1/2 =

?Jrl/g < Qj+1/2 . (18)
The most prominent E-flux is the Enquist-Osher flux
EO 1 1 A l
= (f) + fe)) — 5 [ IF @) ds (19)

i
although other fluxes such as certain forms of Roe’s flux with entropy fix fall into this
category. From (16a-16b), the monotone fluxes of Godunov gﬁrl so and Lax-Friedrichs
950 j are also E-fluxes.

1.1.2 Discrete maximum principles and stability

A compelling motivation for the use of monotone and E-fluxes in the finite volume schemes
(8) and (9) is the obtention of discrete maximum principles in the resulting numerical
solution of nonlinear conservation laws (la). A standard analysis technique is to first
construct local discrete maximum principles which can then be applied successively to
obtain global maximum principles and stability results.

The first result concerns the boundedness of local extrema in time for semi-discrete
finite volume schemes that can be written in nonnegative coefficient form.

7



Lemma 1.1.5 (LED Property) The semi-discrete scheme for each T; € T

de Z
= Clik (un) (ug — 1), (20)
dt |T | Vej €T}

is Local Extremum Diminishing (LED), i.e. local maxima are non-increasing and local
minima are nondecreasing, if

C’jk(uh) >0, Vejk € 0T] . (21)

Proof: Assume a discrete maximum located in cell 7} so that u; —u; < 0. For Cj(us) > 0
this implies that

@

dt —
so that this maximum decreases with time. Repeating the argument for a discrete mini-
mum yields the stated lemma. |

Rewriting the semi-discrete finite volume scheme (8) in terms of monotone fluxes or E-
fluxes

du; Z 9jk (g ug) — fuy) - v
- = (ur — uy)
ot | VeJth?T Ue — U
1 8ng
= T Z (ug, @) (ur — uy) (22)
751 Ve, ,€0T) Quy

for appropriately chosen @, € [u;, uy] together with the monotone flux conditions (12a-
12b) or the E-flux condition (15) reveals that monotone flux and E-flux finite volume
schemes (8) are LED. In order to obtain local space-time maximum principle results for
the fully-discrete discretization (9) requires the introduction of an additional CFL-like
condition for non-negativity of coefficients in space-time.

Lemma 1.1.6 (Local space-time discrete maximum principle) The fully-discrete
scheme for the time slab increment [t",t" | and each T; € T

At
uptt = +W > Cinlup)(uy — uf) (23)
7 Ve €aT,

exhibits a local space-time discrete maximum principle

i o) < utth < noun
ety W 1) < 05T < g (o) (24)
if

Cir(up) >0, Ve, € 9T (25)

and satisfies the CFL-like condition

At
Z Cjr(up) : (26)
Ve k€T



Again noting that the flux terms in the fully-discrete finite volume scheme (9) can be
written in the form (22) reveals that the monotone flux conditions (12a-12b) or the E-
flux condition (15) together with a local CFL-like condition obtained from (26) imply a
local space-time discrete maximum principle. By successive application of Lemma 1.1.6,
a global L*-stability bound is obtained for the scalar initial value problem (la-1b) in
terms of initial data ug(z).

Theorem 1.1.7 (L>™-stability) Assume a fully-discrete finite volume scheme (9) for
the scalar initial value problem (1a-1b) utilizing monotone fluzes or E-fluzes that satisfy a
local CFL-like condition as given in Lemma 1.1.6 for each time slab increment [t",¢"1].
Under these conditions, the finite volume scheme is L*°-stable and the following estimate
holds:
inf ug(z) < wuj < supug(x), forall (T;,t") €T x [0,7]. (27)
zEeR? zERd

*

Consider now steady-state solutions, u"*! = u" = u*, using monotone flux or E-flux
schemes in the fully-discrete finite volume scheme (9). At steady state, non-negativity of
the coefficients C'(uy,) in (23) implies a discrete maximum principle.

Lemma 1.1.8 (Local discrete maximum principle in space) The fully-discrete scheme
(23) exhibits a local discrete mazimum principle at steady state, uj, for each T; € T

min oy <wup < max u (28)
Ve, €0T; Ve, €0T}

g
f

Cj (U,Z) >0, Vejk € 87—} .
Once again by virtue of (12a-12b) and (15), the conditions for a local discrete maximum
principle at steady state are fulfilled by monotone flux and E-flux finite volume schemes
(9). Global maximum principles for characteristic boundary valued problems are readily
obtained by successive application of the local maximum principle result.

The local maximum principles given in (24) and (28) preclude the introduction of
spurious extrema and O(1) Gibbs-like oscillations that occur near solution discontinuities
computed using many numerical methods (even in the presence of grid refinement). For
this reason, discrete maximum principles of this type are a highly sought after design
principle in the development of numerical schemes for nonlinear conservation laws.

1.2 Higher order accurate FV generalizations

Although an O(h'/?) L;-norm error bound for the monotone and E-flux schemes of Sect.
1.1 is known to be sharp ([Pet91]), an O(h) solution error is routinely observed in nu-
merical experiments with convex flux functions. Even so, first order accurate schemes
are generally considered too inaccurate for most quantitative calculations unless the mesh
spacing is made excessively small thus rendering the schemes inefficient. Godunov [God59]
has shown that all linear schemes that preserve solution monotonicity are at most first
order accurate. The low order accuracy of these monotonicity preserving linear schemes
has motivated the development of higher order accurate schemes with the important dis-
tinction that these new schemes utilize essential nonlinearity so that monotone resolution
of discontinuities and high order accuracy away from discontinuities are simultaneously
attained.



1.2.1 Higher order accurate FV schemes in 1-D

A significant step forward in the generalization of Godunov’s finite volume method to
higher order accuracy is due to van Leer [vL79]. In the context of Lagrangian hydrody-
namics with Eulerian remapping, van Leer generalized Godunov’s method by employing
linear solution reconstruction in each cell (see Fig. 1.3b). Let N denote the number of con-

h Ty h
\ K A

a. Cell averaging of data b. Linear reconstruction c. Quadratic reconstruction

Figure 1.3: Piecewise polynomial approximation used in the finite volume method: (a)
cell averaging of analytic data, (b) piecewise linear reconstruction from cell averages and
(c) piecewise quadratic reconstruction from cell averages.

trol volume cells in space so that the j-th cell extends over the interval T; = [x;_1/2, Tj11/2]
with length Az; such that Ui<;<nTj = [0,1] with T, N7; = 0,7 # j. In a purely Eulerian
setting, the higher order accurate schemes of van Leer are of the form

du.; 1 - -
d—t] A—m(g(UjJrl/Q? “;rﬂ/z) - g(uj—l/w “;11/2)) =0
J

where g(u,v) is a numerical flux function utilizing states u,, , and u;’ﬂ/Z obtained from
evaluation of the linear solution reconstructions from the left and right cells surrounding
the interfaces x;1,/2, By altering the slope of the linear reconstruction in cells, non-
oscillatory resolution of discontinuities can be obtained. Note that although obtaining
the exact solution of the scalar nonlinear conservation law with linear initial data is a
formidable task, the solution at each cell interface location for small enough time is the
same as the solution of the Riemann problem with piecewise constant data equal to the
linear solution approximation evaluated at the same interface location. Consequently,
the numerical flux functions used in Sect. 1.1 can be once again used in the generalized
schemes of van Leer. This single observation greatly simplifies the construction of higher
order accurate generalizations of Godunov’s method. The ideas of van Leer have been ex-
tended to quadratic approximations in each cell (see Fig. 1.3c) by Colella and Woodward
[CP84]. Although these generalizations of Godunov’s method and further generalizations
given later can be interpreted in 1-D as finite difference discretizations, concepts origi-
nally developed in 1-D such as solution monotonicity, positive coefficient discretization
and discrete maximum principle analysis are often used in the design of finite volume
methods in multiple space dimensions and on unstructured meshes where finite difference
discretization is problematic.

10



TVD schemes

In considering the scalar nonlinear conservation law (la-1b), Lax [Lax73] made the fol-
lowing basic observation:

“the total increasing and decreasing variations of a differentiable solution
between any pair of characteristics are conserved”.

Furthermore, in the presence of shock wave discontinuities, information is lost and the to-
tal variation decreases. For the 1-D nonlinear conservation law with compactly supported
(or periodic) solution data wu(z,t), integrating along the constant time spatial coordinate
at times ¢; and ¢y yields

/ |du(x,t2)|§/ du(z,h)], > h (29)

This motivated Harten [Har83] to consider the discrete total variation

TV(Uh) = Z |Aj+1/2uh| ) Aj+1/2uh =Ujp1 — Uy
J

and the discrete total variation non-increasing (TVNI) bound counterpart to (29)
TV (up*™) < TV (uf) (30)

in the design of numerical discretizations for nonlinear conservation laws. A number of
simple results relating TVNI schemes and monotone schemes follow from simple analysis.

Theorem 1.2.1 (TVNI and monotone scheme properties, [Har83]) (i) Monotone
schemes are TVNIL (ii) TVNI schemes are monotonicity preserving, i.e. the number of
solution extrema 1s preserved in time.

Property (i) follows from the L; contraction property of monotone schemes [CM80]. Prop-
erty (ii) is readily shown using a proof by contradiction by assuming a TVNI scheme with
monotone initial data that produces new solution data at a later time with interior solu-
tion extrema present. Using the notion of discrete total variation, Harten [Har83] then
constructed sufficient algebraic conditions for achieving the TVNI inequality (30).

Theorem 1.2.2 (Harten’s explicit TVD criteria, [Har83]) The fully discrete explicit
1-D scheme

U?+1 = U;L + At (Oj+1/2(U2) Aj+1/2’dz + Dj+1/2(’LLZ) Aj—l/ZUZ) s j = 1, Ceey N (31)

18 total variation non-increasing if for each j

Cj+1/2 Z 0 s (32&)
Djiip < 0, (32b)
1— At (Cj71/2 - _Dj+1/2) Z 0. (32C)

11



Note that although the inequality constraints (32a-32c) in Theorem 1.2.2 insure that the
total variation is non-increasing, these conditions are often referred to as total variation
diminishing (TVD) conditions. Also note that inequality (32c) implies a CFL-like time
step restriction that may be more restrictive than the time step required for stability
of the numerical method. The TVD conditions are easily generalized to wider support

stencils written in incremental form, see for example [JL86] and their corrected result in
[JL8T].

Theorem 1.2.3 (Generalized explicit TVD criteria, [JL86]) The fully discrete ex-
plicit 1-D scheme

k—1

uitt =l + At Z C'J(-QI/Z(UZ)AJ'HH/WZ, j=1...,N (33)
I=k

with stencil width parameter k is total variation non-increasing if for each j

ciip 2 0, (342)

Cliip <0, (340)

L —=CV > 0, —k+1<I<k—1,140, (34c)
—ar (e, -ci,) = 0. (34d)

The extension to implicit methods follows immediately upon rewriting the implicit scheme
in terms of the solution spatial increments A;_ ;1 /ou; and imposing sufficient algebraic
conditions such that the implicit matrix acting on spatial increments is an M-matrix and
thus has a nonnegative inverse.

Theorem 1.2.4 (Generalized implicit TVD criteria) The fully discrete implicit 1-
D scheme

k-1
“?H — At Z O§21/2(U2+1)Aj+l+1/2uz+1 =uj, j=1...,N (39)
I=—k

with stencil width parameter k is total variation non-increasing if for each j

k—1
i =0, (36a)

—k
ClLh=CV > 0, —k+1<I<k—1,14£0. (36¢)

Theorems 1.2.3 and 1.2.4 provide sufficient conditions for non-increasing total variation
of explicit (33) or implicit (35) numerical schemes written in incremental form. These
incremental forms do not imply discrete conservation unless additional constraints are
imposed on the discretizations. A sufficient condition for discrete conservation of the
discretizations (33) and (35) is that these discretizations can be written in a finite volume
flux balance form

gjv1/2 — 9j-1/2 = E ]+1/2 J+l+1/2Uh
l=—k

12



where g;11/ are the usual numerical flux functions. Section 1.2.1 provides an example
of how the discrete TVD conditions and discrete conservation can be simultaneously
achieved. A more comprehensive overview of finite volume numerical methods based
on TVD constructions can be found the books by Godlewski and Raviart [GR91]| and
LeVeque [LeV02].

MUSCL schemes

A general family of TVD discretizations with 5-point stencil is the Monotone Upstream-
centered Scheme for Conservation Laws (MUSCL) discretization of van Leer [vL79, vL85].
MUSCL schemes utilize a xk-parameter family of interpolation formulas with limiter func-
tion U(R): R — R

_ 1+k 1—k
Uj+1/2 = Uy + \If(Ri)Aj_l/QUh + \I/(I/Rj)Aj+1/2uh
1+& 1—k
u;'tl/Z Ui — \I/(]_/Rj)Aj+1/2’LLh — T\I](Rj)Ajfl/Zuh (37)

where R; is a ratio of successive solution increments

Aj+1/2uh

R;: = .
! A]'71/2Uh

(38)
The technique of incorporating limiter functions to obtain non-oscillatory resolution of
discontinuities and steep gradients dates back to Boris and Book [BB73]. For convenience,
the interpolation formulas (37) have been written for a uniformly spaced mesh although
the extension to irregular mesh spacing is straightforward. The unlimited form of this
interpolation is obtained by setting W(R) = 1. In this unlimited case, the truncation error
for the conservation law divergence in (1a) is given by

Truncation Error = —@(Axfa—gf(u)
N 4 Ox? '
This equation reveals that for kK = 1/3, the 1-D MUSCL formula yields an overall spatial

discretization with O(Az?) truncation error. Using the MUSCL interpolation formulas
given in (37), sufficient conditions for the discrete TVD property are easily obtained.

Theorem 1.2.5 (MUSCL TVD scheme) The fully discrete 1-D scheme

uj+1 =u; = N (9j+1/2 - 9j71/2) , J=1...,N

J

with monotone Lipschitz continuous numerical flux function

gj+1/2 = g(“;+1/27 U;r+1/2)

utilizing the k-parameter family of MUSCL interpolation formulas (37) and (38) is total
variation non-increasing if there exists a W(R) such that VR € R

3—kK 1+ k&
< ¥ < — (1
0 < W(R) < T8 - (14 a)— (392)
and (R



Uiz jm1je = (1 +

U

with o € [=2,2 (1 — k) /(1 + k)] under the time step restriction

max

At 2—(2+a)k |09

1 — >0
Az; 11—k oul;y —
where P 9 P
Og e _ Y (@0t ) — (1
duly P Fu= B he2) T gy (uj_m’u)>

j=1/2%41/2]

=% +
GEMUT_ 1 /2% 41 /0]

Proof: The first step is to introduce the mean value flux function linearization states,
UE [u;_y gty ) and @ € [u], p,uly) ], such that

At , dg
n+1 u j- j
upt o= uf - A—xj(au——(u, Uyr/a k) (Wiayoe = U1o)
(+)

99 ;

+ Dt (U1 /o @) (“;;1/2,1; - “;r—1/2,k))
~—
(=)

The assumption of a monotone flux function fixes the signs of dg/du*. With rearrange-
ment, the remaining terms simplify to

1+ k \I/(Rj_l)

(‘I’(Rj) TR ) - ; " (W(1/R;)R; - ‘I’(l/le))> ARV LS

and

1—k

1+ k&
et = (1= S (VR Ry — W1/ R)) -

Appealing to Harten’s TVD theorem 1.2.2, a sufficient condition for the TVD condition
is that the limiter function W(-) satisfies

e (e - 2 ) A - v 2o

and

1+k 11—k V(R
1= Ry Ry~ 001/R) - 2 (W - FRE ) 2 0
j
together with a CFL-like time step restriction. Both inequalities are simultaneously sat-
isfied if VQ, R, S, T € R

1+ &k 11—k

L+ 2 (W(Q) — W(R)/R) +—

(¥(S)/S =¥(T)) =0 . (40)
Next assume a limiter function W(-) satisfying the interval constraints

0 < Y(R) < f(k,a)
0 < U(R)/R<2+a .
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Inserting these interval limits into the inequality (40) yields an explicit bound for f(k, «)
as indicated in the stated theorem. The time step restriction then follows directly from
theorem 1.2.2. |

For accuracy considerations away from extrema, it is desirable that the unlimited form of
the discretization is obtained. Consequently, the constraint (1) = 1 is also imposed upon
the limiter function. This constraint together with the algebraic conditions (39a-b) are
readily achieved using the well known MinMod limiter, ¥ with compression parameter
f determined from the TVD analysis

UMM(R) = max(0,min(R, 3)) , Be€l,(3—k)/(1-k)] .

Table 1.1 summarizes the MUSCL scheme and maximum compression parameter for a
number of familiar discretizations. Another limiter due to van Leer that meets the tech-

Table 1.1: Members of the MUSCL TVD family of schemes.

K Unlimited Scheme Bmax | Truncation Error
1/3 Third-Order 4 0
-1 Fully Upwind 2 | YAn)2 2 f(u)
0 Fromm’s 3 (A )233:’3 (u)
1/2 | Low Truncation Error | 5 | = (Ax)? 2 f(u)

nical conditions of Theorem 1.2.5 and also satisfies U(1) = 1 is given by

R+ |R|
1+ |R|

\I/VL(R) —

This limiter exhibits differentiability away from R = 0 which improves the iterative con-
vergence to steady state for many algorithms. Numerous other limiter functions are
considered and analyzed in Sweby [Swe84].

Unfortunately, TVD schemes locally degenerate to piecewise constant approximations
at smooth extrema which locally degrades the accuracy. This is an unavoidable conse-
quence of the strict TVD condition.

Theorem 1.2.6 (TVD critical point accuracy, [Osh84]) The TVD discretizations (31),
(38) and (35) all reduce to at most first order accuracy at non-sonic critical points, i.e.
points u* at which f'(u*) # 0 and u’ = 0.

ENO/WENO schemes

To circumvent the degradation in accuracy of TVD schemes at critical points, weaker
constraints on the solution total variation were devised. To this end, Harten proposed the

following abstract framework for generalized Godunov schemes in operator composition
form (see [HOEC86, HOEC87, Har89])

up ™t = A E(r) - Ry(yup) - (41)

In this equation, u} € V) denotes the global space of piecewise constant cell averages as
defined in (7), R)(z) is a reconstruction operator which produces a cell-wise discontinuous
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p-th order polynomial approximation from the given solution cell averages, E(7) is the
evolution operator for the PDE (including boundary conditions), and A is the cell aver-
aging operator. Since A is a nonnegative operator and E(7) represents exact evolution in
the small, the control of solution oscillations and Gibbs-like phenomena is linked directly
to oscillation properties of the reconstruction operator, Rg(x). One has formally in one
space dimension

TV (up™') = TV(A- B(7) - Ry(sup)) < TV(Ry(x;up))

so that the total variation depends entirely upon properties of the reconstruction operator
Rg(x; uy). The requirements of high order accuracy for smooth solutions and discrete
conservation give rise to the following additional design criterion for the reconstruction
operator

o R)(x;up) = u(z) + e(z) AzP*! + O(AzP*?) whenever u is smooth (42a)

o Alr,R)(2;up) = uplr, =uj, j=1,...,N to insure discrete conservation (42b)

o TV(R(z;ul)) < TV (u}l) + O(AzP*h) an essentially non-oscillatory reconstruction.
(42¢)

Harten ([HOEC86, HOEC87, Har89]) then proposed a family of Essentially Non-Oscillatory
Approximations (ENO) which allow O(h?) violations of the discrete maximum principles

outline above. The ENO construction was later simplified and improved by Shu and

coworkers [JS96, Shu99] in the context of Weighted Essentially Non-Oscillatory Approxi-

mations (WENO) schemes. The construction of ENO and WENO schemes is somewhat

technical and deferred to the lectures of Prof. Shu in this lecture series.

1.2.2 Higher order accurate FV schemes in multi-dimensions.

Although the one-dimensional TVD operators may be readily applied in multi-dimensions
on a dimension-by-dimension basis, a result of Goodman and LeVeque [GV85] shows that
TVD schemes in two or more space dimensions are only first order accurate.

Theorem 1.2.7 (Accuracy of TVD schemes in multi-dimensions) Any two-dimensional
finite volume scheme of the form
At At
+1 _ n n n
iy = Ui~ —|T|ij (9341725 = 9i1)2,5) — —|T iy

3

u (hijpip—hij1p2) » 1<i<M, 1<j<N

),

with Lipschitz continuous numerical fluzes for integers p,q,r, s

giv1/2) = 9(Wipj—gr-- s Uitrjts),
higrig = h(Wiipj—g-- s Uitrjts),
that is total variation non-increasing in the sense
n+1 n
TV(up™) <TV(up)

where

TV () = Y [Avivrjag [tiprg — i)+ Azijia [ — )]
i’j

15 at most first-order accurate.

Motivated by the negative results of Goodman and LeVeque, weaker conditions yielding

solution monotonicity preservation have been developed from discrete maximum principle

analysis. These alternative constructions have the positive attribute that they extend to

unstructured meshes as well.
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Positive coefficient schemes on structured meshes

Theorem 1.1.6 considers schemes of the form

u”+1—u”+ Z Cip(up)(up —u?) , VT; €T

j j j
Ve iL€0T}
and provides a local space-time discrete maximum principle

: n+1 n o, n
weithy (e ) S 05 = g ()
VT; € T under a CFL-like condition on the time step parameter if all coeflicients C'j;, are
nonnegative. Schemes of this type are often called positive coefficient schemes or more
simply positive schemes. To circumvent the negative result of Theorem 1.2.7, Spekreijse
[Spe87] developed a family of high order accurate positive coefficient schemes on two-
dimensional structured M x N meshes. For purposes of positivity analysis, these schemes
are written in incremental form on a M x N logically rectangular 2-D mesh

U?;rl =uy; + At (AR (ul; —uly) + Bl (Ul — uly) ' _
+ Oy (Ui — ) + Dy (uf oy —uiy) ), 1<i<M, 1<j<N
(43)

where the coefficients are nonlinear functions of the solution

An

i+l — ( z 137 zg? Z-I—l]" )
Bn,JJrl = ( zy 1 zy’ zy+17' )

i—1,5 = ( z 1,50 zy’ z+1]7' )
Dl = D(..., Uiy, ”,umﬂ,...) )

Once written in incremental form, the following theorem follows from standard positive
coefficient maximum principle analysis.

Theorem 1.2.8 (Positive coefficient schemes in multi-dimensions) The discretiza-
tion (43) is a positive coefficient scheme if for each 1 <i < M, 1 < j < N and time slab
increment [t", "]

Ay >0, Bl >0, Gy >0, DIy, >0, (44)

1,j—
and
1—At(A;’+1]+B”+1+C” i+ DY )>0 (45)

with discrete space-time maximum principle
n n n n n+1 n n n n
mm(uz]a Wi 1,55 Wit1,50 Uij—1> Uz‘,j+1) Sy < max(u”, Wi 1,55 Wi, Wi g1 Ui,j+1)
and discrete mazimum principle at steady state

U*

F
u ij—1

k k k *
min (u; 41,5 Uz‘,j+1) < U i S max(u; 1]7ui+1,j7ui,j717ui,j+1)

i—1,5°
where u* denotes the numerical steady state.

Using a procedure similar to that used in the development of MUSCL TVD schemes in 1-D,
Spekrijse [Spe87] developed a family of monotonicity preserving MUSCL approximations
in multi-dimensoins from the positivity conditions of Theorem 1.2.8.
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Theorem 1.2.9 (MUSCL positive coefficient scheme,[Spe87]) The fully discrete 2-
D finite volume scheme

il At " At

Ui = Uy |T|i,j(gl+1/27] 9%1/2,]) |Tij

)

(hijprp—hij1p2) » 1<i<M, 1<j<N

utilizing monotone Lipschitz continuous numerical fluz functions

. o - +
Jit1/2,j = 9(u Uiy1/2,5 ui+1/2,j)
+

hi,j+1/2 = h(“,]+1/27 i,j+1/2

and MUSCL extrapolation formulas

- 1
U1y = Wig T35 5 (R ;) (uij — ui-1,5)
1
wlypy = wig = 5V Rig) (Wi — uig)
- 1
Uijyrp = Wij T 5\11(5 ) (i — wij—1)
1
“:j—1/2 = Uy — 5\11(1/5 ) (Wige1 — uij)
where
_ Uit1,y — Uiy _ Wij+1 — Uiy
Rij=——"——", 5j=———""
Wij — Wi—1,j Wij — Wij—1

satisfies the local maximum principle properties of Lemma 1.2.8 and is second order ac-
curate if the limiter W = W(R) has the properties that there exist constants € (0, 00),
€ [—2,0] such that VR € R

a<VU(R)<f, —BS\I}TF)SQwLa (46)

with the constraint U(1) = 1 and the smoothness condition W(R) € C? near R =
together with a time step restriction for stability

At ag n,max | ) |n,max
1—(14+p (‘— +|=— ) >0
( ) |T; ;| ou li,j ou lij
where

ag max ag . ag :
ou = su 7\, U, )= =, LU >0
ou i,J ge[ui—_l/lﬁi—ﬂ/m] 8u—( z+1/2,]) au-i-( i—1/2,5 ) =

§€[ui—1/2,j’ui+1/2,j]
oh

max oh oh ~
~ + .
— sup —(u,u. - >0 .
ou lij aefu” W 8u_( ”H/Q) 8u+( hj=1/2) i)

ij—1/2%, 4172
el 1 pud o)

Proof: The first step is to introduce the mean value flux function linearization states
— ut

u € fu; 1/2,5° i+1/2]] u € [u 1/2,5° z+1/2]] u € [u,; ij—1/2) z]+1/2] and @ € [u; ij—1/2) ,]+1/2]

such that

At 0
un+1 u. = g

ij — Wiy A_x(au* (4, “z‘++1/2,j) (“;+1/2,j - U;1/z,j)
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g , _ -
+8F(ui—1/2,j’ u) (u;;-l/Q,j - u:r—l/2,j))
At Oh . , _
A—x(au—*(u’ u:j+1/2) (ui,j+1/2 - ui,jf1/2)
oh

g (e ) (W41 = Ui 1))

or equivalently by

uptt =, — %(8_9_@ Uiiry,) ol M S (i — ui-1,5)
’ T Qu/ ’ Ujj — Wi—1,j
(+)
b0 ) 20028 T
@; e Uit1y = Ui s
(=)
LB Y
Ay Quz " W g — W
(+)
Oh s Uiy Ui (i1 — i)
1,7 2y .

G—1/2
Qut i1/ Wi 1 — Ui

(=)

Sufficient conditions for a positive coefficient discretization are then given by

- - + +
i+1/2, 1—1/2, i+1/2, 1—1/2,
/2, /2, Z 0 , /2,3 /2,3 Z 0
ui,] Ui—1,j Uitl,j = Uiy
—u; u —u
1/2 1/2 ij+1/2 jj—1/2
]+ / ] / Z 0 , Z7]+ / 2,] / 2 0 .
ulv] ul,j_l ul,]"_l - ulv]
Define the following ratios of successive differences
Uit1,j — Uiy Uij+1 — Uiy
Ryj=—"——  S§;=—-—2
Uij — Ui-1, Wij — Wij—1

and the limited extrapolation formulas

) 1
ui-l—l/?,j = ul,] +5 ) (R ) (u%] ui—l,j)
1
Ty uij = 5 U/ Rijg) (wivr — i)
] T
ui,j+1/2 ui,] 5\:[](5 ) (u%] ui,j—l)
1
Ui = iy = 3Y/Sig) (Wign — i)

(47)

By forming the ratios (47), a sufficient condition for positivity of the ratios is that VR, S €

R
1 1
L+ SU(R) = 5U(S)/S 20 .

Boundedness of the coefficients is obtained by requiring that

U(R) - W(5)/S <26 .
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The scheme is therefore monotonicity preserving under a time step restriction if
a<VU(R)<p .
and
—8<UY(R)/R<2+«

where we assume « € [—2,0]. The time step restriction is then directly obtained from
Theorem 1.2.8. |}

A similar proof follows immediately assuming that the numerical flux is an E-flux. Many
limiter functions satisfy the technical conditions (46) of Theorem 1.2.9. Some examples
include

e the van Leer limiter

R+ |R|
\I/VL R = T~
W =TTR
e the van Albada limiter iR
+
\I/VA —
(B) 1+ R?

In addition, Koren [Kor88] has constructed the limiter

R+ 2R?

K _
w(m_2—R+ﬂP

which also satisfies the technical conditions (46) and corresponds for smooth solutions in
1-D to the most accurate k = 1/3 MUSCL scheme of van Leer.
FV schemes on unstructured meshes utilizing linear reconstruction

Higher order finite volume extensions of Godunov discretization to unstructured meshes
are of the general form

du; 1 _
d—tj =TT Z gin(up,ul) , VI €T (48)
| J| Ve, €0T;

with the numerical flux g;;(u,v) given by the quadrature rule

gjr(u ik _]k qug VjK(2q); ]k(xQ)7u_;—k(xq)) ) (49)

where w, € R and 2, € e;; represent quadrature weights and locations, ¢ = 1,...,Q.
Given the global space of piecewise constant cell averages, u;, € V), the extrapolated states
uj(r) and uj(z) are evaluated using a p-th order polynomial reconstruction operator,
RO VP e V,f’ ,

uj(r) = lflﬁ]lRU(x—EV]k(x),Uh)
wi(e) = limRy(w + evi(@); )

for x € ej,. In addition, it is assumed that the reconstruction satisfies the property
|—1,‘ I Rg(x; up) dr = u;. In the general finite volume formulation, the control volume
J J
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Figure 1.4: Polygonal control volume cell 7; and perimeter quadrature points (solid cir-
cles).

shapes need not be convex, see for example Fig. 1.4. Even so, the solution accuracy
and maximum stable time step for explicit schemes may depend strongly on the shape
of individual control volumes. In the special case of linear reconstruction, RY(x;uy), the
impact of control volume shape on stability of the scheme can be quantified more precisely.
Specifically, the maximum principle analysis presented later for the scheme (48) reveals
an explicit dependence on the geometrical shape parameter

9" = sup o () (50)

0<0<2n

where 0 < «(f) < 1 represents the smallest fractional perpendicular distance from the
gravity center to one of two minimally separated parallel hyperplanes with orientation 6
and hyperplane location such that all quadrature points in the control volume lie between
or on the hyperplanes as shown in Fig. 1.5. Table 1.2 lists ['9¢™ values for various

& gravity center

e quadrature point

fi(e)

Figure 1.5: Minimally separated hyperplanes h” () and hY () and the fractional distance
ratio a(f) for use in the calculation of I'8®™.

control volume shapes in R', R2, R?, and R?. As might be expected, those geometries
that have exact quadrature point symmetry with respect to the control volume gravity
center have geometric shape parameters ['8*°™ equal to 2 regardless of the number of space
dimensions involved. The following lemma and subsequent theorem build upon several
techniques set forth in [Osh84, Liu93, Wie94, BLC96| that are now extended to arbitrary
linear reconstruction and general control volume shapes.
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Table 1.2: Reconstruction geometry factors for various control volume shapes utilizing
midpoint quadrature rule.

control volume shape | space dimension [reeom

—_

segment
triangle
parallelogram
regular n-gon
tetrahedron
parallelepiped
simplex
hyper-parallelepiped
polytope

N W N

n/

—
3

N
_

T

d

A A AW W NN
[NCRE S G
—

Eqn. (50)

Lemma 1.2.10 (Finite volume interval bounds on unstructured meshes, R?(x; uy))

The fully discrete finite volume scheme

At P
=t = 25N gt VI eT (51)

with monotone Lipschitz continuous numerical fluz function, nonnegative quadrature weights,
and linear reconstructions

u;k(x) = lgfglR?(x—€ij($);Uh) , TEej, up €V
ujk(x) = lgiglR?(x+6ij(x);uh) , T Ee€Ej, u, € V0,

with extremal trace values at control volume quadrature points

Umin = min ol (z UM = max ut (z Ty € €5 52
J Ve, €OT; ]k( 2 J Ve €07 ]k( 2 q = ik (52)
1<¢<Q 1<¢<Q

exhibits the local interpolated interval bound

o U™ + (1 = oj)uf < u?“ < (1 =oy) uf + o U (53)

with the time step proportional interpolation parameter o; defined by

At - -
" " e, aT7+(ij(xq);u,u) (54)
J Ve €0T; “E[U;nm’n,UJ‘.“a"m]
1<q<@Q ie[UJx_nin,n,UJmax "

that depends on the shape parameter I'8°™ defined in (50).
Proof: Let u, and up denote two arbitrary states. The scheme in semi-discrete form is
readily manipulated into the following equivalent forms
1 - o+
(uj)e = —vr Z gjk(ujk’ ujk)

|7—'J| Vej €T}
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- T Z (g (ua, up) + (gik (ujp, ujy) — gjr(ua, up)))
TV Ve, coT;

= T > (gir(wasup) + (g (g ) — gie(wa, uly))
J Vej €T}
+ (gjr(ua,u Jk) 9jk(ua, up)))

1 - _
= o S0 (gmleaen) + D ey e )i sy, ) (1) — )

751 Ve €OT; 1<q<Q \,—/
ik Sq
(+)
+ ) Wq 7,7 ik (%q); A, tjkg) (U3 (24) —UB))
1<q<Q \,—/

(-)

for assumed nonnegative quadrature weights w, and chosen mean value states w;z, €
[ua, u (7)) and wjrg € [up,uj,(z,)]. Next, define the extreme trace values at control

volume quadrature points

U™t = min ol (z UM = max ul (x T, € €;

J Ve, €OT; k( a) J Vej1, €OT; k( a) q gk
1<q<Q 1<q<Q

u™ = min u () ul™ = max uj (z,) Tq € €

T 7 wejpeor; IRV T T vejpedr; IRV 7=
1<4<Q 1<4<Q

so that upon setting

up = u;™" and up = U™ = max(u}™, U™™)

the following inequality from above holds

1
(u])t S _ﬁ Z g]k( II'lln Umax) ]
TV Ve, €01y
Similarly, upon setting
uyg = ut and up = UmlIl = mln(u;nm Z/{mm)

j
the following inequality from below holds

1
(uj)t Z — Z gjk( max Umln) )

| J| Ve, €T}

In both cases, the numerical flux of a constant state over the support of the local dis-
cretization can be added since its contribution vanishes when summed over a closed control

volume
1

(uj)t S _m Z g]k:( min Uma.x)
T Ve, €01y
1 mln max min , min
= —m Z (g]k( U )_gjlc( iUy )
I Ve, €Ty
1 ag]k mln/\ max mln
= 3[R )| e - (55)

|T7| Ve;, €0T;
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and the second case

(uj)t > Z g]k max UmlIl)

VejkeaT
1 m X min m X max
= _|— Z (g (w5, UM™) = gje(u™, ui™))
Ve, €T}
1 agk max A min max
=07 > aﬁ(“ )| (U™ = uf™) (56)
J Ve, €0T;

for chosen mean Value states U € [u", U] and @ ie [u®, U™"]. The next task is to
bound U;™* — w7 assuming a hnear reconstruction Wlth cell average u; located at the
centroid of T;. From the definition of I'**™ in (50), a bound on the extremal interior
states and cell average of the form

[egeom _ 1

., min geom (, max __ , min geom —
uj uj S Y (U Uy ) ) Y - [geom

j j
for T9¢™ € (1,00) is readily obtained for any linear reconstruction operator with cell
average equal to u;. By definition, u;™ < U so that the sequence of inequalities
follows straightforwardly

[Jmax _ ;nin — (U;nax _ uj) 4 (uj _ u;nin) .
< (U;nax . Uj) + ,ygeom (u;pax . u;mn)
< (U;nax . Uj) + ,ygeom (U;nax o u;nln)

(]_ geom)(Uma.x o ;nln) < (U;nax o uj)
<

[Jmax _ min

] Fgeom (U;nax _ ug) .

max

i is obtained

Using similar arguments, a bound inequality on UJ‘-nin —u

min __ , max geom min __ .
U — % > PEeOm (7 g,

Inserting these inequalities into (55) and (56)

['geom
T3]

3 9Gjk ; max = 3| (7rmin reeom 3 9Gjk ; min = | (7max
au+ (U » U ) (U _u]) S (U/]) < |7’1]| au+ (U » U ) (U _u])
Ve;, €0T; Vej, €0T;

or in slightly weaker form
0; (U™ — uy) < (ug); < 65 (U™ — uy)

with

1 ag k ~ =

0 = Tl [eeom E sup 0l J+ (Vjk(q); u, )
| ]| Ve, €9T; EE[U;.“’“’TL,U;“&X"
1<q<@Q ie[UJr_nin,n,U]I_nax n

Replacing the time derivative with a discrete forward Euler integration together with
rearrangement of terms yields the stated lemma. |

Given the two-sided bound of Lemma 1.2.10, a discrete maximum principle is obtained
under a CFL-like time step restriction if the limits U;"* and U;nin can be bounded from
above and below respectively by the neighboring cell averages. This idea is given more
precisely in the following theorem.

24



Theorem 1.2.11 (Finite volume maximum principle on unstructured meshes, RY)
Let u}“in and uj'™ denote the minimum and mazimum value of solution cell averages for
a gwen cell T; and corresponding adjacent cell neighbors, i.e.

up™ = veglé%Tj (uj, up) and uj™ = vé_rklg%ch(uj, ug,) - (57)
The fully discrete finite volume scheme
't =t — At Z (TR VI; €T (58)
i T Y 9ik\Ujk > Uik ) j

| J| Ve, €0T;

with monotone Lipschitz continuous numerical fluz function, nonnegative quadrature weights,
and linear reconstructions

u;k(x) = lelglRl( —evjp(z);up) , T E€ej , u€ |7
u;“k(x) = hinR "z +evjr(x);up) , xE€ej, up€Vy (59)

exhibits the local space-time mazimum principle for each T; € T

min (uf,up) < it < max (uf,up)
Ve, €0T; Vej €T}

as well as the local spatial mazimum principle at steady state (u™*1 = u™ = u*)

min u; <wu; < max
VejkeaT VejkeaTj
if the linear reconstruction satisfies Ve, € 01 and x4 € ejr,q=1,...,Q
min,n  min,n max,n = max,n
max (u; " g ") < ug” () < min(uf ", w0 (60)

under the time step restriction

Gg'k ~ =<
1- —|T | [eeom E sup 8u]+ (Vjk(xq);u,u)| >0
VE k e@T ug[umln n,u;na.x TL

1<q<Q 56[ ;nln n,u;_na.x n]

with T'8°™ defined in (50).

Proof: The proof follows immediately from (53) in Lemma 1.2.10 by considering an
interface shared by two control volumes since the condition (60) places a bound on the
extremal trace values (52). |}

Note that a variant of this theorem also holds if the definition of 4™ and u™™ are ex-
panded to include more control volume neighbors. Two alternative definitions frequently

used when the control volume shape is a simplex are given by

max

ui'™ = min wug and W= max wy . (61)
J T,eT J T,eT
T; ATy, £0 T; Ty, #0

These expanded definitions include adjacent cells whose intersection with 7} in R? need
only be a set of measure zero or greater.
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Slope limiters for linear reconstruction. Given a linear reconstruction RY(x;u;) that does
not necessarily satisfy the requirements of Theorem 1.2.11, it is straightforward to modify
the reconstruction so that the new modified reconstruction does satisfy the requirements
of Theorem 1.2.11. For each control volume T; € 7 a modified reconstruction operator

RY(z;up) of the form
R )l = o+ oo (B3 ), — )

is assumed for ag; € [0, 1]. By construction, this modified reconstruction correctly repro-
duces the control volume cell average for all values of ar,, i.e.

1 0
] /T]- Ry (z;up) do = u; . (62)

The most restrictive value of ar, for each control volume Tj is then computed based on
the Theorem 1.2.11 constraint (60), i.e.

min(u;.“a",urknax)—uj

if RY(zq;un)|r, > min(u™, wp)

RY(xq5un)|T; —u; 7
MM _ ; max(u™" y ) —y; . .
(6] = min j 7k J : 0 . min , min (63)
T; . ;
j Ve €0T; RY(zq5un) 1, —u; if Ry (xqa Uh) |T] < maX(U] ) Uy )
1<q<@ .
1 otherwise

where u™® and u™™" are defined in (57). When the resulting modified reconstruction
operator is used in the extrapolation formulas (59), the discrete maximum principle of
Theorem 1.2.11 is attained under a CFL-like time step restriction. By utilizing the in-
equalities

max(u;, up) < min(w; ™, up™) and  min(u;, ug) > max(u

min min)
i

7]
J 7k
it is straightforward to construct a simpler but more restrictive limiter function

max(uj u)—u;

R (wqsun)lr; —uj if R (g5 un) |y > max(u;, ug)

LM _ ; min(uj,ug)—u; . 0 .
a7 = min DnyUk) Tt . . 64
T ve;k€0T; | RY(wgsun)lr; —u; if 2 (g; un)|y < min(uj, ) (64)
1<g< .
sasQ 1 otherwise

that yields modified reconstructions satisfying the technical conditions of Theorem 1.2.11.
This simplified limiter (64) introduces additional slope reduction when compared to (63).
This can be detrimental to the overall accuracy of the discretization. The limiter strategy
(64) and other variants for simplicial control volumes are discussed further in [Liu93,
Wie94, BLC96].

In Barth [BJ89], a variant of (63) was proposed

max __

u uj . 0 max
R?(mq;uh)|Tj —uj 1( @ h)|TJ J
BJ __ . u[‘niniu. .
o’ = min J e PO . min 65
T veir€oT; | R (agrun)lr; —u; if R} (xq’ uh)|Tj < uy (65)
1<¢<@Q .
1 otherwise

Although this limiter function does not produce modified reconstructions satisfying the
requirements of Theorem 1.2.11, using Lemma 1.2.10 it can be shown that the Barth
and Jespersen limiter yields finite volume schemes (51) possessing a global extremum
diminishing property, i.e. that the solution maximum is non-increasing and the solution
minimum is nondecreasing between successive time levels. This limiter function produces
the least amount of slope reduction when compared to the limiter functions (63) and (64).
Note that in practical implementation, all three limiters (63), (64) and (65) require some
modification to prevent near zero division for nearly constant solution data.
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Linear reconstruction operators on simplicial control volumes

Linear reconstruction operators on simplicial control volumes that satisfy the cell aver-
aging requirement (42b) often exploit the fact that the cell average is also a pointwise
value of any valid linear reconstruction evaluated at the gravity center of a simplex. This
reduces the reconstruction problem to that of gradient estimation given pointwise samples
at the gravity centers. In this case, it is convenient to express the reconstruction in the
form

RY(x; up) |, = uj + (Vuy)p, - (v — %) (66)

where 2% denotes the gravity center for the simplex T; and (Vuy)r; is the gradient to
be determined. Figure 1.6 depicts a 2-D simplex A93 and three adjacent neighboring
simplices. Also shown are the corresponding four pointwise solution values {A, B,C, O}
located at gravity centers of each simplex. By selecting any three of the four pointwise
solution values, a set of four possible gradients are uniquely determined, i.e. { V(ABC),
V(ABO), V(BCO), V(CAO) }. Using the example of Fig. 1.6, a number of slope limited

Figure 1.6: Triangle control volume Ajs3 (shaded) with three adjacent cell neighbors.

reconstruction techniques are possible for use in the finite volume scheme (58) that meet
the technical conditions of Theorem 1.2.11.

1. Choose (Vup)r,, = V(ABC) and limit the resulting reconstruction using (63) or
(64). This technique is pursued in Barth [BJ89] but using the limiter (65) instead.

2. Limit the reconstructions corresponding to gradients V(ABC'), V(ABO),V(BCO)
and V(C'AO) using (63) or (64) and choose the limited reconstruction with largest
gradient magnitude. This technique is a generalization of that described in Batten
et al. [BLC96] wherein limiter (64) is used.

3. Choose the unlimited reconstruction V(ABC),V(ABO),V(BCO) and V(CAO)
with largest gradient magnitude that satisfies the maximum principle reconstruc-
tion bound inequality (60). If all reconstructions fail the bound inequality, the
reconstruction gradient is set equal to zero, see Liu [Liu93].

Linear reconstruction operators on general control volumes shapes

In the case of linear reconstruction on general volume shapes, significant simplification is
possible when compared to the general p-exact reconstruction formulation given in Sect.
1.2.2. Tt is again convenient to express the reconstruction in the form

R(l](l", Uh)|Tj = Uj + (Vuh)Tj . (LU — JZ?) (67)
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Figure 1.7: Triangulation of gravity center locations showing a typical control volume
Ty associated with the triangulation vertex vy with cyclically indexed graph neighbors
Ty, k=1,..., Ny.

where 2§ denotes the gravity center for the control volume T and (Vuy)r; is the gradient
to be determined. Two common techniques for simplified linear reconstruction include a
simplified least squares technique and a Green-Gauss integration technique.

Simplified least squares linear reconstruction. As was exploited in the linear reconstruc-
tion techniques for simplicial control volumes, linear reconstructions satisfying (42b) on
general control volume shapes are greatly simplified by exploiting the fact that the cell
average value is also a pointwise value of all valid linear reconstructions evaluated at the
gravity center of a general control volume shape. This again reduces the linear recon-
struction problem to that of gradient estimation given pointwise values. In the simplified
least squares reconstruction technique, a triangulation (2D) or tetrahedralization (3D) of
gravity centers is first constructed as shown in Fig. 1.7. Referring to this figure, for each
edge of the simplex mesh incident to the vertex vy, an edge projected gradient constraint
equation is constructed subject to a pre-specified nonzero scaling wy,

wi (V) g, - (2} — 25) = wi(uk — uo) -

The number of edges incident to a simplex mesh vertex in R? is greater than or equal to
d thereby producing the following generally non-square matrix of constraint equations
w1 Az w1 Ay$ wi(uy — up)
: (Vun)g, = :
W, AT, W, AYR, Wy, (Un, — o)
or in abstract form
[Ll LZ] Vu = f .
This abstract form can be symbolically solved in a least squares sense using an orthogo-
nalization technique yielding the closed form solution
;) (68)

with /;; = Ijl . Ej. The form of this solution in terms of scalar dot products over incident
edges suggests that the least squares linear reconstruction can be efficiently computed via
an edge data structure without the need for storing a non-square matrix.

Vi — # 522(E1 : f) - l12(E2
u = ) - — —
liilye — I3y \ 11 (Lo - f) — L

28



Green-Gauss linear reconstruction. This reconstruction technique specific to simplicial
meshes assumes nodal solution values at vertices of the mesh which uniquely describes a C°
linear interpolant, u;,. Gradients are then computed from the mean value approximation

10| (Vun)a, Vuy, dr = / updv . (69)
o a0

For linear interpolants, the right-hand side term can be written in the following equivalent

k+1

—

Figure 1.8: Median dual control volume T demarcated by median segments of triangles
incident to the vertex vy with cyclically indexed adjacent vertices vy, k =1,... Ny.

form using the configuration depicted in Fig. 1.8

No

3
/ Vuy, de = Z §(u0 + ug) Vo
Qo

k=1

where 1, represents any path integrated normal connecting pairwise adjacent simplex

gravity centers, i.e.
9”%-1/2
Yok :/ dv . (70)

Ie]:—l/Z
A particularly convenient path is one that traces out portions of median segments as
shown in Fig. 1.8. These segments demarcate the so-called median dual control volume.
By construction, the median dual volume |T}] is precisely equal to |2]/3 in 2-D. Conse-
quently, a linear reconstruction operator on non-overlapping median dual control volumes
is given by

|To| (Vup)r, NZ (uwo + ug) Vo - (71)

The gradient calculation is exact Whenever the numerical solution varies linearly over the
support of the reconstruction. Since mesh vertices are not located at the gravity centers
of median dual control volumes, the cell averaging property (42b) and the bounds of
Theorem 1.2.11 are only approximately satisfied using the Green-Gauss technique.

A number of slope limited linear reconstruction strategies for general control volume
shapes are possible for use in the finite volume scheme (58) that satisfy the technical
conditions of Theorem 1.2.11. Using the example depicted in Fig. 1.7, let V1 /2uy, denote
the unique linear gradient calculated from the cell average set {ug, ug, ugy1}. Three slope
limiting strategies that are direct counterparts of the simplex control volume case are:

1. Compute (Vuy)g, using the least squares linear reconstruction or any other valid
linear reconstruction technique and limit the resulting reconstruction using (63) or
(64).
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2. Limit the reconstructions corresponding to the gradients Vi ipup, bk = 1,..., Ny
and (Vuy)q, using (63) or (64) and choose the limited reconstruction with largest
gradient magnitude.

3. Choose the unlimited reconstruction from Vi ipup, bk = 1,..., Ny and (Vuy)p,
with largest gradient magnitude that satisfies the maximum principle reconstruc-
tion bound inequality (60). If all reconstructions fail the bound inequality, the
reconstruction gradient is set equal to zero.

General p-exact reconstruction operators on unstructured meshes

Abstractly, the reconstruction operator serves as a finite-dimensional pseudo inverse of
the cell averaging operator A whose j-th component A; computes the cell average of the

solution in 7}
1
A-u:—/ uwdx .
T Uy

The development of a general polynomial reconstruction operator, Rg, that reconstructs p-
degree polynomials from cell averages on unstructured meshes follows from the application
of a small number of simple properties.

1. (Conservation of the mean) Given solution cell averages uy,, the reconstruction Rguh
is required to have the correct cell average, i.e.

if v = Rguh then u;, = Av .

More concisely,
ARg =1

so that Rg is a right inverse of the averaging operator A.

2. (p-exactness) A reconstruction operator Rg is p-exact if R?,A reconstructs polyno-
mials of degree p or less exactly. Denoting by P, the space of all polynomials of
degree p,

iquPpandv:AuthenRgv:u .

This can be written succinctly as
0
Ry Alp, =1

so that Rg is a left inverse of the averaging operator A restricted to the space of
polynomials of degree at most p.

3. (Compact support) The reconstruction in a control volume 7; should only depend
of cell averages in a relatively small neighborhood surrounding 7;. Recall that a
polynomial of degree p in R? contains (p:;d) degrees of freedom. The support set

for T} is required to contain at least this number of neighbors. As the support set

becomes even larger for fixed p, not only does the computational cost increase, but
eventually the accuracy decreases as less valid data from further away is brought

into the calculation.

Practical implementations of polynomial reconstruction operators fall into two classes:
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e Fixed support stencil reconstructions. These methods choose a fixed support set
as a preprocessing step. Various limiting strategies are then employed to obtain
non-oscillatory approximation, see for example Barth [BF90] and Delanaye [Del96]
for further details.

e Adaptive support stencil reconstructions. These ENO-like methods dynamically
choose reconstruction stencils based on solution smoothness criteria, see for example

[HCI1, Van93, Abg94, Son97, Son98| for further details.

Positive coefficient schemes on unstructured meshes

Several related positive coefficient schemes have been proposed on multi-dimensional sim-
plicial meshes based on one-dimensional interpolation. The simplest example is the upwind
triangle scheme as introduced by Billey et al. [BPPS87], Desideri and Dervieux [DD88|,
Rostand and Stoufflet[RS88] with later improved variants given by Jameson [Jam93] and
Cournede et al. [CCDD98]. These schemes are not Godunov methods in the sense that
a single multi-dimensional gradient is not obtained in each control volume. The basis
for these methods originates from the gradient estimation formula (71) generalized to the
calculation of flux divergence on a median dual tessellation. In deriving this flux diver-
gence formula, the assumption has been made that flux components vary linearly within
a simplex yielding the discretization formula

/Tdiv(f)d:v: frdv=Y" %(f(uj)+f(uk))"/jk

j ot} Ve, €OT;

where v, is computed from a median dual tessellation using (70). This discretization is
the unstructured mesh counterpart of central differencing on a structured mesh. Schemes
using this discretization of flux divergence lack sufficient stability properties for computing
solutions of general nonlinear conservation laws. This lack of stability can be overcome
by adding suitable diffusion terms. One of the simplest modifications is motivated by
upwind domain of dependence arguments yielding the numerical flux

1
gik(ug, up) = 5 (f(ug) + fluk)) - vie — §|a|jk Ajpu , Ajru = ug — uy (72)

DN —

with a;;, a mean value (a.k.a. Murman-Cole) linearization satisfying
ij . A]kf = ajk A]’ku .

Away from sonic points where f'(u*) = 0 for u* € [u;, uj;1], this numerical flux is formally
an E-flux satisfying (15). With suitable modifications of @, near sonic points, it is then
possible to produce a modified numerical flux that is an E-flux for all data, see Osher
[Osh84]. Theorems 1.1.6, 1.1.7 and 1.1.8 show that schemes such as (9) using E-fluxes
exhibit local discrete maximum principles and L, stability.

Unfortunately, schemes based on (72) are too dissipative for most practical calcula-
tions. The main idea in the upwind triangle scheme is to add anti-diffusion terms to
the numerical flux function (72) such that the sum total of added diffusion and anti-
diffusion terms in the numerical flux function vanish entirely whenever the numerical
solution varies linearly over the support of the flux function. In all remaining situations,
the precise amount of anti-diffusion is determined from maximum principle analysis.
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Figure 1.9: Triangle complex used in the upwind triangle schemes showing the linear
extension of e;, into neighboring triangle for the determination of points z; and z;.

Theorem 1.2.12 (Maximum Principles for the Upwind Triangle Scheme) Let 7T
denote the median dual tessellation of an underlying simplicial mesh. Also let u; denote
the nodal solution value at a simplex vertex in one-to-one dual correspondence with the
control volume T; € T such that a C° linear solution interpolant is uniquely specified on
the simplicial mesh. Let gji(ujr, uj, ug, ug) denote the numerical flux function with limiter
function ¥(-) : R+— R

1 1 ITANTY)
e N = (s P PR e AR N
i (g, sy Wpy Up) Q(f(uy) + flur)) - vk 5%k < (hj,j Ajku>> jkU

1 _ hk Akkfu
Za 1w 2= 7 A
* 2a‘7k < <h;kkl A]ku Jku ’

Vjf Ajkf = Qjk A]ku (73)

utilizing the mean value speed ajy, satisfying

and variable spacing parameter hj, = |Ajpx|. The fully discrete finite volume scheme

n+l _ n_ﬁ

Uy = Uy .
7,

> gl upup) . VT ET

ik €0T}

with linearly interpolated values uy and wy as depicted in Fig. 1.9 exhibits the local
space-time maximum principle

min (uf,up) < uit < max (uf, up)
Ve, €0T; Ve €T}

under a time step restriction and the local spatial maximum principle at steady state
(un-i-l =" = U*)
min u; <wu; < max uy
Ve, €0T ) 7 Ve, €Ty

if the limiter V(R) satisfies VR € R
0<W(R)/R , U(R)<2.

Proof: Utilizing the mean value linearization 73, the numerical flux is rewritten in the
following equivalent forms:

1 hk A 1 _ h'k Akk/u
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+ jk=5') j - J
=—a; VU Ajiu+ —la; 2—U | ———) ) Axju
2 ik <h]/]A]kU> <A]/]u 7 2| ]k| hkk’A]ku ki
By construction (see Fig. 1.9), the state value uy is a positive weighted (convex) com-
bination of u, and uy and similarly u; is a positive weighted combination of u, and
up. Focusing on control volume T}, the stated theorem follows immediately upon the
requirement that the discretization for control volume 7; be a positive coefficient dis-

cretization, i.e. that the discretization for control volume T} depends positively on u; and
nonpositively on surrounding solution values subject to a time step restriction. |

Some standard limiter functions that satisfy the requirements of Theorem 1.2.12 include

e the MinMod limiter with maximum compression parameter equal to 2

UMM(R) = max (0, min(R, 2))

e the van Leer limiter

_R+|R

UV (R) = THIR

Other limiter formulations involving three successive one-dimensional slopes are given in

[Jam93, CCDD98].

1.2.3 Extension to systems of nonlinear conservation laws

A positive attribute of finite volume methods is the relative ease in which the numerical
discretization schemes of Sects. 1.1 and 1.2 can be algorithmically extended to systems
of nonlinear conservation laws of the form

Ou+V-f(u) = 0 in R x R" | (74a)
u(z,0) = wup(w) in R (74b)

where u(z,t) : R x Rt — R™ denotes the vector of dependent solution variables, f(u) :
R™ — R™*? denotes the flux vector, and uy(x) : R — R™ denotes the initial data vector
at time t = 0. It is assumed that this system is strictly hyperbolic, i.e. the eigenvalues of
the flux jacobian A(v;u) = 0f/0u - v are real and distinct for all bounded v € R?.

The main task in extending finite volume methods to systems of nonlinear conservation
laws is the construction of a suitable numerical flux function. To gain insight into this
task, consider the one-dimensional linear Cauchy problem for u(x,t) : R x Rt — R™ and
up(z) : R+— R™

du+0,(Au) = 0 in R x R" |
u(z,0) = wup(r) inR (75)
where A € R™™ is a constant matrix. Assume the matrix A has m real and distinct
eigenvalues, \; < A\; < -++ < Ay, with corresponding right and left eigenvectors denoted
by rr € R™ and [, € R™ respectively for k =1, ..., m. Furthermore, let X € R™*" denote
the matrix of right eigenvectors, X = [ry,...,r,], and A € R™™ the diagonal matrix

of eigenvalues, A = diag(A1, ..., \y) so that A = XAX~'. The one-dimensional system
(75) is readily decoupled into scalar equations via the transformation into characteristic
variables a = X

da+0,(Aa) = 0 in R x R" |
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a(z,0) = ay(z)inR (76)
and component-wise solved exactly
B (z,t) = a[(]k)(a: —Xet) , k=1,....m

or recombined in terms of the original variables

u(z,t) = Zlk cug(x — A\ t) g -
k=1

Using this solution, it is straightforward to solve exactly the associated Riemann problem
for w(&, ) € R™

Orw+ 0g(Aw)=0 inRxR"
with initial data

Ju iE<O0
zM&@-{U if€ >0

thereby producing the following Godunov-like numerical flux function

g(u,v) = Aw(0,R")

1 1

= §(AU+AU) - §|A|(v—u) (77)
with |A] = X|A|X~'. When used in one-dimensional discretization together with piece-
wise constant solution representation, the linear numerical flux (77) produces the well-
known Courant-Isaacson-Rees (CIR) upwind scheme for linear systems of hyperbolic equa-
tions

At
1 —
ufth =l — = (AT (uf —uf) + AT (uf, — )
where A* = XA*X~!. Note that higher order accurate finite volume methods with
slope limiting procedures formally extend to this linear system via component wise slope
limiting of the characteristic components o),k = 1,...m for use in the numerical flux

(77).

Numerical flux functions for systems of conservation laws

In Godunov’s original work (see Godunov [God59]), exact solutions of the one-dimensional
nonlinear Riemann problem of gas dynamics were used in the construction of a similar
numerical flux function

9%(u,v) = f(w(0,R")) - v (78)

where w(§, 7) € R™ is now a solution of a nonlinear Riemann problem
Oyw + 0 f(w) =0  in R xR

with initial data e
u 1fE<O
1“§m_{v if >0

Recall that solutions of the Riemann problem for gas dynamic systems are a composition
of shock, contact and rarefaction wave family solutions. For the gas dynamic equations
considered by Godunov, a unique solution of the Riemann problem exists for general states

34



u and v except those states producing a vacuum. Even so, the solution of the Riemann
problem is both mathematically and computationally nontrivial. Consequently, a number
of alternative numerical fluxes have been proposed that are more computationally efficient.
These alternative numerical fluxes can be sometimes interpreted as approximate Riemann
solvers. A partial list of alternative numerical fluxes is given here. A more detailed
treatment of this subject is given in Godlewski and Raviart [GR9I1|, Kroner [Kr597], and
LeVeque [LeV02].

e Osher-Solomon flux ([OS82]). This numerical flux is a system generalization of
the Enquist-Osher flux of Sect. 1.1. All wave families are approximated in state
space as rarefaction or inverted rarefaction waves with Lipschitz continuous partial
derivatives. The Osher-Solomon numerical flux is of the form

9% 0,0) = 50 + S0 v = 5 [ 1A

where |A| denotes the usual matrix absolute value. By integrating on m rarefac-
tion wave integral subpaths that are each parallel to a right eigenvector, a system
decoupling occurs on each subpath integration. Furthermore, for the gas dynamic
equations with ideal gas law, it is straightforward to construct m—1 Riemann invari-
ants on each subpath thereby eliminating the need for path integration altogether.
This reduces the numerical flux calculation to purely algebraic computations with
special care taken at sonic points, see Osher [0S82].

e Roe flux ([Roe81]). Roe’s numerical flux can be a interpreted as approximating all
waves families as discontinuities. The numerical flux is of the form

9", ) = 5 (F() + F@) v = 5145 ,0) (0~ w)

where A(v;u,v) is the “Roe matrix” satisfying the matrix mean value identity

(f(v) = f(u)) - v =A(w;u,v) (v —u)

with A(v;u,u) = A(v;u). For the equations of gas dynamics with ideal gas law, the
Roe matrix takes a particularly simple form. Steady discrete mesh-aligned shock
profiles are resolved with one intermediate point. The Roe flux does not preclude the
formation of entropy violating expansion shocks unless additional steps are taken
near sonic points.

e Steger-Warming flux vector splitting ([SW81]). Steger and Warming considered
a splitting of the flux vector for the gas dynamic equations with ideal gas law
that exploited the fact that the flux vector is homogeneous of degree one in the
conserved variables. From this homogeneity property, Euler’s identity then yields
that f(u)-v = A(v;u) u. Steger and Warming then considered the matrix splitting

A=AT+4 |, A*=XAEX!

where A* is computed component wise. From this matrix splitting, the final upwind
numerical flux function was constructed as

PWV(u,v) = AT (v;u)u+ A (v;v)v .
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Although not part of their explicit construction, for the gas dynamic equations with
ideal gas law, the jacobian matrix d¢g°V /Ou has eigenvalues that are all nonnegative
and the jacobian matrix d¢°% /Ov has eigenvalues that are all nonpositive whenever
the ratio of specific heats  lies in the interval [1,5/3]. The matrix splitting leads to
numerical fluxes that do not vary smoothly near sonic and stagnation points. Use
of the Steger-Warming flux splitting in the schemes of Sect. 1.1 and 1.2 results in
rather poor resolution of linearly degenerate contact waves and velocity slip surfaces
due to the introduction of excessive artificial diffusion for these wave families.

Van Leer flux vector splitting. Van Leer [vL.82] provided an alternative flux splitting
for the gas dynamic equations that produces a numerical flux of the form

9" (u,v) = £ (u) + [ (v)

using special Mach number polynomials to construct fluxes that remain smooth
near sonic and stagnation points. As part of the splitting construction, the jacobian
matrix d¢g5V /Ou has eigenvalues that are all nonnegative and the matrix d¢°"W /ov
has eigenvalues that are all nonpositive. The resulting expressions for the flux
splitting are somewhat simpler when compared to the Steger-Warming splitting.
The van Leer splitting also introduces excessive diffusion in the resolution of linearly
degenerate contact waves and velocity slip surfaces.

System Lax-Friedrichs flux. This numerical flux is the system equation counterpart
of the scalar Lax-Friedrichs flux (14). For systems of conservation laws the Lax-
Friedrichs flux is given by

9 () = () + F (@) v~ () (v =)

where «(v) is given through the eigenvalues A (v;w) of A(v;w)

alv) = lrﬁr}cag}inwsgl[lfu] | Ak (v;w)] .

The system Lax-Friedrichs flux is usually not applied on the boundary of domains
since it generally requires an over specification of boundary data. The system Lax-
Friedrichs flux introduces a relatively large amount of artificial diffusion when used
in the schemes of Sect. 1.1. Consequently, this numerical flux is typically only used
together with relatively high order reconstruction schemes where the detrimental
effects of excessive artificial diffusion are mitigated.

Harten-Lax-van Leer flux ([HLvL83]). The Harten-Lax-van Leer numerical flux
originates from a simplified two wave model of more general m wave systems such
that waves associated with the smallest and largest characteristic speeds of the m
wave system are always accurately represented in the two wave model. The following
numerical flux results from this simplified two wave model

1 1o + Qppj Orax Omi
HLL _ 1 _,, + Cmax min . . max®min .
9 0) = 57 (1) +F ()= 5 TR ) (). S,y
where
Omax(V) ZIISI}%%(O, sup A\g(v;w)) Ozminzlgllclgnm(o,wg[lufzv} A (v w))

weE [u,v]
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When compared to the Lax-Friedrichs flux, this flux can be considerably more ac-
curate in flow situations where 0 < |(@max + Omin)/(Qmax — Omin)| < 1. Using this
flux, full upwinding is obtained for supersonic flow. Modifications of this flux are
suggested in Einfeldt [EMRS92] to improve the resolution of intermediate waves as
well.

Further examples of numerical fluxes (among others) include the kinetic flux vector
splitting due to Deshpande [Des86], the advection upstream splitting flux (AUSM) of

Liou [LS93], and the convective upwind and split pressure (CUSP) flux of Jameson
[Jam93, Jam95].
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Chapter 2

A Posteriori Error Estimation for
Higher Order Godunov Methods

Abstract: In this lecture, A posteriori error estimates for high order Godunov finite
volume methods are presented which exploit the two solution representations inherent in
the method, viz. as piecewise constants u and cellwise p-th order reconstructed functions
Rguo. Using standard duality arguments, an exact error representation formula for user
specified functionals is derived that is tailored to the class of high order Godunov finite
volume methods with data reconstruction as first described in Barth and Larson [BLO02].
From this error representation formula, computable error estimates are then devised that
exploit the structure of Godunov finite volume methods. The present theory applies
directly to a wide range of finite volume methods based on cellwise reconstruction (see
Chapter 1) including MUSCL, TVD, UNO, and ENO methods [vL79, Har83, HOECS87,
Har89, SO88, BJ89, BF90, DOE90, Bar98, Abg94, Van93|. Practical issues such as the
treatment of nonlinearity and the post-processing of dual problem data are considered.
Numerical results using the schemes of Chapter 1 for linear advection and nonlinear
conservation laws at steady-state are presented to validate the analysis.

2.1 Overview

A frequent objective in numerically solving partial differential equations is the subsequent
calculation of certain derived quantities of particular interest, e.g., aerodynamic lift and
drag coefficients, stress intensity factors, mean temperatures, etc. Consequently, there is
considerable interest in constructing a posteriorierror estimates for such derived quantities
(mathematically described as functionals) so as to improve the reliability and efficiency of
numerical computations. For an introduction to a posteriori error analysis see the articles
by Becker and Rannacher [BR98], Eriksson et al. [EEHJ95], Giles et al. [GLLS97, GP99],
Johnson et al. [JRB95], Parashivoiu et al. [PPP97], Prudhomme and Oden [PO99, OP99],
Siili [S98], the collected NATO lecture notes [BD02], and a previous version of this work
in Barth and Larson [BL02].

This lecture revisits the topic of a posteriori error estimation of user prescribed func-
tionals with specific consideration given to finite volume methods that are extensions
of Godunov’s original method [God59] to high order accuracy via various forms of data
reconstruction, e.g. MUSCL in [vL79], TVD in [Har83], UNO in [HOECS87], ENO in
[Har89, SO88] with faithful generalizations of Godunov’s method to unstructured meshes
given in [BJ89, BF90, DOE90, Bar98, Abg94, Van93|. Recall from Chapter 1 that these
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methods can be viewed abstractly in the following operator composition form for a first-
order conservation law in d space dimensions and time

ugtt = A B(r) - Ry(-)up - (1)

In this lecture, ug denotes the space of piecewise constant cell-averages of the conservation
law solution u(x,t) at time ¢, Rg(x) is a reconstruction operator which produces a cellwise
discontinuous p-th order polynomial approximation of the solution given cell-averages,
E(t) is the evolution operator for the PDE (including boundary conditions), and A is the
cell-averaging operator such that A|; performs cell-averaging for each control volume 7" in
the mesh 7. The requirements of high order accuracy for smooth solutions and discrete
conservation give rise to the following additional design criterion for the reconstruction
operator (see Harten [HOEC87, Har89])

o R)(z)up = u(z) + O(h**") whenever u is smooth (2)

o AlrR)(z)ug = ugly, VI' € T to insure discrete conservation (3)

As we will see, it is possible (see Barth and Larson [BLO02]) to construct an exact error
representation formula and simple a posteriori error estimation theory without knowing
the precise details of a particular reconstruction operator beyond the requirements of
Eqns. (2) and (3). In constructing this a posteriori error estimation theory for finite vol-
ume methods, it is convenient to utilize the notion of a mesh dependent broken space Vf
consisting of discontinuous piecewise polynomials of at most degree p in each control vol-
ume. Using this space, consider the Discontinuous Galerkin (DG) finite element method
introduced by Reed and Hill [RH73] as analyzed by Johnson and Pitkiranta [JP86] and
further refined for nonlinear conservation laws by Cockburn et al. [CLS89, CS97]:

DG FEM. Find u, € V;;D’ such that
Bpe(up,v) = F(v), Yve VZ],3 (4)

where Bpg(-, ) denotes an abstract variational form corresponding to a weak integrated-
by-parts form of the conservation law and F'(v) a functional possibly including boundary
conditions and any external forcing terms. Precise forms of these operators will be given
later. It is well-known that in the case p = 0, the DG method reduces to the lowest order
accurate Godunov finite volume method. As will be shown later, the underpinning of the
present, error estimation theory comes from the simple observation that the higher order
Godunov methods can be expressed as a Petrov-Galerkin variant of the basic DG method:
Higher Order Godunov FVM. Find uy € VP such that

Boa(Ryuo,v) = F(v), YveVy, RY: V3=V . (5)

Here Rg represents the same reconstruction operator described in Chapter 1 which maps
one broken space into another. Using these constructions, it will be shown that the
a posteriori error estimation theory previously developed for the DG method can be
modified for use in higher order Godunov methods with a modicum of effort by appealing
directly to the Petrov-Galerkin form given in Eqn. (5).

Remark 2.1.1 The idea of abstractly representing finite volume methods as a Petrov-
Galerkin variational method has been used previously in a priori error estimates for finite
volume methods discretizing elliptic problems in [BR87, Cai91, Sil91, LMV96, VHMDYS,
Cha99, CL00, Her00, EGH00, ELL02].
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Remark 2.1.2 Although time dependent terms are present in portions of the presenta-
tion and the theory applies to full space-time formulations, the final analysis as well as
calculated numerical results will present error estimates for steady-state calculations.

2.2 Higher Order Godunov Finite Volume Methods
in Petrov-Galerkin Form

Let © be a domain in R? and 7 a tessellation of 2 into control volumes, T' € 7. Further let
VB be the mesh dependent broken space of discontinuous piecewise Sobolev H* functions
defined on T, i.e.,

VB ={v:vlr € HT), VT € T} . (6)
Similarly, let Vf denote the finite dimensional space consisting of discontinuous piecewise
polynomial functions of degree p defined on the tessellation 7T

V) ={v:vlp e P,(T), VT € T} (7)

with P,(T’) the space of polynomials of degree < p defined in a control volume 7.
Next consider the following prototype scalar nonlinear conservation law in a domain
Q with boundary I with solution u(z,t) : Q x R — R and flux vector f(u): R — R?

uy+divf(u) = 0, in Q x [0, 7]
u(z,0) = wup(x), inQ
a (nyu)(g —u) = 0, on I' with a(n;ju) = f,-n .
Let I, denote the time slab increment, I,, = [t,,tn41], with [0,7] = Up—on-11,. In

addition, let 7" and T" denote two control volumes adjacent to an interface e so that
u4 (0T Ne) denotes the trace restrictions of functions on that interface segment such that
u_(z) is the restriction from 7" and wu,(x) is the restriction from 7" for x € e. Using
this compact notation, the Godunov finite volume method and discontinuous Galerkin
method for a single time slab increment are written succinctly as

Godunov Finite Volume. Find ug € V§ such that for each T € T

d
@/ ug dt+/h(n; (Ryug)—, (Ryug)+) ds dt+/h(n; (Ryug)—, g) dsdt =0 (8)
I, I I

nXOT\I' nXO0TNT

Discontinuous Galerkin. Find u, € V} for all v € V}} (implied sum on i)

Z (/Ifx(#p),t dx dt — /Um fi(uy) do dt + /Iv h(n; (up)—, (up)4) dsdt

TeT I, xT nXOT\I
+/v_ h(n; (up)—, g)ds dt) =0 9)

I, xdTAT
where h(n;u_,uy) is a numerical flux function such that f(u) -n = h(n;u,u) and
h(n;u_,u;) = —h(—n;uy,u_). In these formulations, we have omitted (for sake of

simplicity) those terms that would arise from discontinuous in time approximation since
our final objective here are error estimates at steady-state. Also observe that Eqn. (9) is
consistent with our abstract variational representation given earlier for DG in Eqn. (4)
Find u, € V) such that

Boc(uy,v) = F(v), YveV) . (10)
Close comparison of Eqns. (8) and (9) suggests the following lemma of importance in a
posteriori error estimation for Godunov finite volume methods.
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Lemma 2.2.1 Let Rg denote a reconstruction operator Rg VP Vz? on a nondeforming
space-time tessellation T x I, satisfying the cell-averaging condition for ug € V¥ and all

TeT
(Ryuo, v)lr = (ug,v)|r, Vv e Vg (11)

where (-, )| denotes an inner product integration on ) restricted to a control volume T.
The Godunov finite volume method (8) is written equivalently as the following Petrov-
Galerkin variant of the discontinuous Galerkin method (9):
Find uy € Véa

Boc(Ryug,v) = F(v), YveVy . (12)

Proof: The proof follows immediately from term-by-term inspection of Eqns. (8) and
(9) together with the cell-averaging condition (11). |

Remark 2.2.2 Observe that the cell-averaging condition given here in Eqn. (11) is iden-
tical to that given earlier in Eqn. (3).

2.3 A Posterior: Error Estimation of Functionals

Using Lemma 2.2.1, an exact error representation formula and computable a posteriori
error estimates will be derived for user specified functionals tailored to Godunov finite
volume methods as first described in Barth and Larson [BL02]. The development given
here follows closely the previous work of Becker and Rannacher [BR98] and Siili [S98] as
well as previous a posteriori error estimation work by the present author in [Bar99, BL99|
for the DG method.

2.3.1 Functionals

The objective is to estimate the error in a user specified functional M (u) which can be
expressed as a weighted integration over the domain €2

My (u) :/wN(u) dx

Q

or a weighted integration on the boundary I'
My (u) :/wN(u) dx

r

for some user specified 1) and function N(u) : R — R. Examples of functionals used in
later calculations are:
Example 1: Outflow functional, u; + A - Vu =0

M¢(u):/r1/)(A-n)+udx, reR . (13)

Example 2: Solution average functional
Maye(u) = / udr, ze€R". (14)
Q
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Example 3: Mollified pointwise functional

Mo = [ v(rile =z uds, R (15)

0 r >
P(ro;r) = 1/ 2/r3-1)
2 [70 @/ D g "< To

2.3.2 Error Representation Formulas

In this section, exact error representation formulas are derived for three abstract formu-
lations with

(1) B(-,-) a bilinear form with M(-) a linear functional

(2) B(+,-) a semilinear form (nonlinear in the first argument and linear in the second
argument) with M(-) a nonlinear functional

(3) B(R)-,-) a nonlinear semilinear form (nonlinear in the first argument and linear in the
second argument) with M(-) a nonlinear functional

In these derivations, 7, denotes any suitable projection operator (e.g. interpolation, L,
projection) into V.

Theorem 2.3.1 (Galerkin error representation, B(-,-) bilinear and M (-) linear)
Let B(-,-) denote a bilinear form and M(-) a linear functional. Assume the finite-
dimensional primal numerical problem

Find u, € Vz? such that
B(up,v)=F(v) YveV) , (16)

and the infinite-dimensional auxiliary dual problem

Find ® € VB such that
B(v,®)=M(v) VYveV®.

Then, the numerical error in a linear functional M(u) — M (u,) is given by the following
error representation formula:

M(u) — M(u,) = F(® — 7,®) — B(uy, & — 7,) . (17)

Proof: An exact error representation formula for a given functional M (-) results from
the following steps:

M(u) — M(u,) = M(u — uy) (linearity of M)
= B(u — uy,, ®) (dual problem)
= B(u — up, ® — m,P) (orthogonality)
= B(u,® — 1,®) — B(u,, ® — m,®) (linearity of B)
=F(® — 1,®) — B(uy, ® — m,P) (variational problem)
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Next, we consider a semilinear form B(-,-) (nonlinear in the first argument and linear in
the second argument) and a nonlinear functional M(-). To cope with nonlinearity, it is
convenient to introduce the mean value linearizations
B(u,v) = Bluy,v) + Bluy,u;u —uy,v) VoveV?
M(u) = Muy) + M(up, u;u —up) .

For example, if B(u,v) = (Lu, v) for some nonlinear differential operator L then for v € V¥

Blu,v) = Bluy,v)+ (/01 Lo(8(6)) d6 (u — uy).v)
= B(uy,v) + (L (u— up),v)

= B(uy,v) + B(uy, u; u — uy, v).

with 4(f) = u, + (v — u,) 6. A simple error representation formula then results for
nonlinear Galerkin variational forms.

Theorem 2.3.2 (Galerkin error representation, 5(-,-) semilinear and M(-) non-
linear) Let B(-,-) denote a semilinear form and M(-) a nonlinear functional. Assume
the finite-dimensional primal numerical problem

Find u, € Vzl? such that
B(uy,v) = F(v) VveV (18)

and the infinite-dimensional auxiliary mean value linearized dual problem

Find ® € VB such that

B(u,,u;v,®) = M(u,,u;v) YoveV® . 19
p p

Then, the numerical error in a nonlinear functional M(u) — M(uy,) is given by the fol-
lowing error representation formula:

M(u) — M(uy) = F(® — m,®@) — B(uy, & — m,®) . (20)

Proof: An exact error representation formula for a given nonlinear functional M(-) then
results from the following steps

M(u) — M(upy) = M(up, u;u — uy) (mean value M)
= B(up, u;u — u,, ®) (dual problem)
= B(up, u;u — uy, ® — m,®) (orthogonality)
= B(u,® — 1,®) — B(up, ® — m,®) (mean value B)
=F(® —7,®) — B(u,,® —m,®), (variational problem)

Remark 2.3.3 Note that although Eqns. (17) and (20) appear identical, mean value
linearization introduces a subtle right-hand side dependency on the exact solution in Eqn.
(20). This complication is addressed in Sect. 2.4.2.
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Next, we consider Godunov finite volume methods with B(R)-,-) semilinear and M(-)
nonlinear. Mean value linearizations are again introduced

B(u,v) = B(Ryug,v) + B(Rfug, u;u — Ryug,v) Vv € V°
M(u) = M(Rguo) +M(Rgu0,u;u - Rguo) .

Theorem 2.3.4 (Godunov finite volume error representation, B(R,,-) semilin-

ear and M(-) nonlinear, [BL02]) Let B(R)-,-) denote a Godunov finite volume semilin-
ear form and M(-) a nonlinear functional. Assume the finite-dimensional primal Godunov
finite volume numerical problem

Find ug € V3 such that
B(R)ug,v) = F(v) YoveVy (21)

and the infinite-dimensional auxiliary mean value linearized dual problem

Find ® € V® such that
B(Ryuo,u;v,®) = M(v) VwvelV” . (22)

Then, the numerical error in a nonlinear functional M(u) — M(Rguo) is given by the
following error representation formula:

M (u) = M(RJug) = F(® — my®) — B(Ryug, ® — mo®) . (23)

Proof: An exact error representation formula for a given nonlinear functional M(-) for
the class of Godunov finite volume methods results from the following steps

M (u) = M(R)ug) = M(u— R)uy) (mean value M)
= B(u — Ryug, D) (dual problem)
= B(u — R)uy, & — my ) (orthogonality)
= B(u, ® — mo®) — B(Ryug, ® — mo®) (mean value B)
= F(® — my®) — B(Ryug,® — my®),  (Godunov FV problem)

This final form for the Godunov finite volume method serves as a progenitor for the
remaining derivations given below.

2.4 Computable Error Estimates

Computationally, the error representation formulas (17), (20) and (23) are not suitable
for obtaining computable a posteriori error estimates and use in mesh adaptation.

e & € VP, the solution of the infinite-dimensional problem is not generally known.

e The mean value linearization used in the linearized dual problems (19) and (22)
requires knowledge of the exact solution w.

e The error representation formulas do not suggest any simple strategy for control
volume refinement /coarsening.
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2.4.1 Approximating & — P

We list several strategies for approximating ® — my® for Godunov finite volume methods.
The first two techniques seek to exploit the two scale structure of Godunov methods, i.e.
that as a weighted residual method of Petrov-Galerkin type, the residual is orthogonal to
test functions in Vg and not to test functions in V).
Inherent two scale approximation. Compute the linearized dual problem:

Find &y € V§ such that

B(RYuo, u; v, R)®g) = M(Ryug, u;v), Vo€ Vg

and approximate
®—m® ~ R)Dy — Dy (24)

Remark 2.4.1 This strategy fails in standard Galerkin finite element methods since any
approximation of ® € V]]? is orthogonal to the residual, hence with Galerkin finite element
methods the contribution is identically zero and no error estimate is obtained.

Patch recovery post-processing. Compute the linearized dual problem:
Find &y € V§ such that

E(Rgug, u;v, Rg@o) = M(Rgug, u;v), Yov eV
and approximate using a patch recovery technique }_22 : Vz? —> Vf’ forq>p
® — m® ~ R ROD, — D (25)

The patch recovery is motivated by the original work of Zienkiewicz and Zhu [ZZ92]. In
the present computations, the least squares reconstruction operator discussed in Section
2.6 is also used as a patch recovery operator so that

Global higher order solves. Solve the linearized dual problem global using a higher order
method:
Find ®y € V' such that

B(Rgug,u;v,Rg(I)O) = H(Rguo,u;v), YoveVy

for some ¢ > p. While conceptually straightforward, this technique typically makes solv-
ing the linearized dual problem more computationally expensive than the primal problem
in terms of computer memory and arithmetic operations. This can be prohibitive in three
space dimensions.

2.4.2 Approximating the Mean Value Linearized Dual Problem

The mean value linearization requires knowledge of the exact solution u. Two computable
approximate linearizations are considered

Jacobian derivative linearization. The mean value linearization is supplanted by the Ja-
cobian linearization so that the computable linearized dual problem for the Godunov
method is obtained
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Find ®, € V§ such that

E(Rguo, Rguo; v, Pg) = M(Rgug, Rguo; v) YoelVP . (27)

Mean value linearization via post-processing and numerical quadrature. The Godunov FV

method provides easy access to post-processed approximations of the solution, i.e. RzRguo
as Rguo for ¢ > p, thus suggesting the improved computable approximation of the mean
value linearized dual problem

Find ®y € VP such that for ¢ > p

B(R)uo, Ryuo; v, ®g) = M(Ryug, Rjug;v) ¥ veV® (28)

where numerical quadrature (i.e. trapezoidal quadrature) is employed to approximate
the mean value path integration.

2.4.3 Direct Estimates

Given the error representation formula (23) for the Godunov finite volume method, error
estimates suitable for adaptive meshing are easily obtained

o)| = [B(RYug, ® — mo®) — F(® — mo®)| (error representation)

R
Ryu
Z (Br(Ryug, ® — my®) — Fr(® — m®))| (element assembly)
ot

Z ‘ BT R o, ® — mo®) — Fr(® — qu)))‘ (triangle inequality)
TeT
(29)

where Br(-,-) and Fr(-) are restrictions of B(-,-) and F(-) to the control volume 7.

Note that the element assembly representation is not unique. For example strong and
weak forms of the variational operator B(-, -) yield differing assembly representations. For
the Godunov finite volume method with time terms omitted, the error representation
formula (23) yields

B(RgUO,q)—T(’O(I)) —F(q)—’ﬂ'()q) / f ROUU —71'0@) dx
TeT
—i—/((I) — mo®)— h(n; (Ryug) -, (Roug)4) ds
AT\l
+/ (® — @) h(n; (Ryuo)—, g) ds). (30)
aTnT

The present numerical computations utilize the numerical flux formula

(Flmsus) + Fm ) = glalmaus,w))| e (31)

DN | =

h(n;u-, uy) =

with @(u_,uy) chosen so that

[f (s )T = a(n; a(u-, uy)) [u] (32)
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with f(n;u) = (f(u_) - n) and a(n;u) = df(n;u)/0u. Using this particular numerical
flux, the following weighted residual (strong) form can be obtained upon integration by
parts

B(Roug, ® — m®) — F( — mo®) = Y (/(@ — 7o®) div f(ROup) da

TeT
+ / ( — 70®)_a~ (n; (Roug) , (Roug) ) [Rouo]* ds
T\
+ [ (@ —m@) (R%uo)_, g) (g — (R0uo)_) ds). (33)

This latter weighted residual form and the implied element assembly form » .. By (:,-) —
Fr(-) is preferred in the error estimates (29) since the individual terms represent residual
components that vanish individually when the exact solution is inserted into the vari-
ational form and a slightly sharper approximation is obtained after application of the
triangle inequality in (29).

2.5 Adaptive Meshing

The error estimates of the previous section motivate a simple strategy for mesh adaptation.
Defining for each control volume 7'

nr = Br(Ryug, ® — my®) — Fr(® — m®) (34)

we have a candidate adaptation element indicator |nr| such that

(M(u) = M(Ryuo)| < [nr (35)

TeT

and an accurate adaptation stopping criteria

[M(u) = M(Ryuo)| = | el - (36)

TeT

These quantities suggest a simple mesh adaptation strategy in common use with other
indicator functions:

Mesh Adaptation Algorithm

(1) Construct an initial mesh 7.

(2) Compute a numerical approximation of the primal problem on the current mesh 7T
using Godunov’s method with p-th order reconstruction yielding Rgug.

(3) Compute a numerical approximation of the dual problem on the current mesh 7 using
Godunov’s method with p-th order reconstruction yielding Rg@o.

(4) Optionally improve the accuracy of the numerically computed dual problem via a
post-processing recovery operator EZ for ¢ > p yielding }_%ZR?)(PO.

(5) Compute nr for all control volumes in 7 using Rgug and the approximation

O — 710® &~ RODy — &y or & —m® ~ Ry ROy — By

(6) If( | ey nrl < TOL) STOP
(7) Otherwise, refine and coarsen a user specified fraction of the total number of control
volumes according to the size of |n|r, generate a new mesh 7 and GOTO 2
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2.6 Least Squares Reconstruction on Patches

The reconstruction operator used in calculations is based on a least squares approximation

given cell-averages on patches of control volumes. Let N (T) C € denote a patch of

control volumes containing the control volume 7. The global reconstruction operator

Rg Vg — Vf is constructed piecewise on a local patch-by-patch basis with
(RO,N(T)U0)|T = (R2U0)|T: VI eT

P

for uy € V5 so that the task reduces to that of finding the local patch reconstruction
operator Rg,N(T) for each T € T. To do so, first define the Ly projection Il : VB — Vg,
i.e. for each u € V®

(u — Mou,v) =0, YveV, .

The local reconstruction operator Rg N(T) is then constructed from the following two
conditions

1. Exact I, projection in 7. The Iy projection of Rg,N(T)UU is exact in T, i.e., it
holds that
HO,TRg,N'(T)UO = Uo, T for each Uy € V(? (37)

where Iy 7 and gy denote restrictions of Il and ug to the control volume 7'. This
condition is equivalent to the cell-averaging property given in Eqn. (3).

2. Constrained least squares fitting on patch N (7). The L, deviation of the
Iy 7+ projection of Rg) N () U0 from given cell-averaged data in patch control volumes
T' € N(T) is minimized subject to the constraint (37)

0 _ .
luo — o Ry prrry ol n(ry = pealit luo — Tow|| xr(z), (38)

for all ug € V. Here Q,(N(T)) is the subspace of polynomials in P,(AN (7)) such
that (37) holds.

Remark 2.6.1 (p-th Order Exactness) Note that the patch cardinality card(N (T)) is
always chosen sufficiently large (e.g. by increasing graph distance) so that there exists
a unique solution to the constrained least squares problem and the local reconstruction
operator R&N(T) is fully determined. As a consequence, it follows that for r <p

RO,N(T) Mou, = u, Yu, € P.(N(T)),

p

which simply asserts that if the given data u, is in the space of polynomaials of degree r < p
in the patch neighborhood N (T'), then the cellwise projection to cell-averages followed by
p-th order patch reconstruction exactly reproduces the given data.

2.7 Slope Limiting for Discontinuous Solutions

For solutions containing discontinuities such as the Burgers’ equation example of Sect.
2.8, a slope limiter is employed following the analysis of Chapter 1 so that non-oscillatory
solutions are obtained. The following particular solution ansatz for each T € T

U(LU)T = Uo,T + \IJT . (Rg(l’)UO — UO)T (39)
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is chosen with Wy € [0, 1] so that the cell-average property of the reconstruction (37) is
maintained regardless of the particular value of Wp. Next for each T" € T compute the
minimum and maximum of all adjacent neighbor cell-averages

min : max
U = min ug7g U = max Uggr
T ey T T men(y

and determine the largest value of W € [0,1] such that
up™ < U(z)r < up™

when evaluated at the quadrature points used in the flux integral computation. To achieve
this, compute the extrapolated state U(z,) at each quadrature point location x, in the
flux integral and determine the most restrictive W

min(1, ﬁ), if U(zy) —uor >0

U = min(1, 75=2L), if Uz,) — ugyr < 0 (40)
1 if U(l'q) — Uo,T7 = 0

across all quadrature points. Unfortunately, the convergence of nonlinear iterative meth-
ods can be erratic using this type of non-differentiable limiter. Consequently, an addi-
tional quadratic dissipation term is added to the numerical flux function for discontinuous
solution problems to enhance the convergence of nonlinear iterative methods

B (n, € (ROug)—, (Rouo)+) = h(n; (Rous)_, (Rouo)+)

+ GSL(11p|f,|< " ) o] ™ (41)

with € = .01 used in the Burgers’ equation calculations given below.

2.8 Numerical Results for Scalar Conservation Laws

To validate and assess the a posteriori error estimation theory for the Godunov finite
volume method, numerical solutions for linear advection and nonlinear Burgers’ equation
are computed.

Linear Advection. u(x,y) : [0,1]> = R with A = (—y, z)7.

div(Au) = 0, in0,1)?
u(z,0) = g(x),
u(l,y) = 0

with inflow profile data

g(x) = {15(9/20; o — 1/2]) - (1= 9(9/20; | — 1/20])) if z < 1/2
(9/20; |2 — 1/2[) - (1 — (9/20; |& — 19/20])) if = > 1/2

where ¢(r; ) = ¢(r;x)/1(r;0) and ¢(r;z) the mollifier function defined in Eqn. 15.
Figure 2.1 (left) shows isocontours of the primal numerical solution obtained using the
Godunov method with linear reconstruction on a relatively fine mesh containing 6400
simplicies. Figure 2.1 (right) graphs global measures of the solution error on meshes
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Figure 2.1: Circular advection problem. Isocontours of the primal numerical solution
R%uy computed using the Godunov FVM method with linear reconstruction on a mesh
containing 6400 simplicies (left) and global measures of solution error versus mesh spacing
parameter h (right).

\
)

Figure 2.2: Isocontours of the coarsest mesh (400 simplicies) numerical solution RYuy
obtained using the Godunov FVM with linear reconstruction (left) and isocontours of the

post-processed solution Ry R%ug = ROuo (right).

containing 400, 1600, 6400 and 25600 simplices. The graphs show that the L, solution
error in cell-averages ||ug — u|r, as well as the H; semi-norm of the linearly reconstructed
solution |R%ug — u|p, are both first order accurate as expected while the L, solution error
in the linearly reconstructed solution ||R{ug — u||r, exceeds second order accuracy. Also
included in these graphs is the effect of solution post-processing. Specifically, the quadratic
post-processing recovery procedure E;R‘fuo = RYuy was employed. Although the L, norm
||RSuy — ||, shows no improvement in convergence rate (slope), a slight vertical shift
in the graph of this data indicates a slight improvement in absolute accuracy that is
somewhat obfuscated by the logarithmic scaling. More conspicuous is the improvement
in the H; semi-norm. The effect of post-processing is to increase the convergence rate
of |RYug — u|g, to second order. This indicates significant improvement in the accuracy
of derivative information through least squares post-processing. This improvement is
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visually seen in Fig. 2.2 which shows isocontours of the numerical solution obtained on
the coarsest mesh and the effect of quadratic post-processing. Next, the a posteriori error
estimates are evaluated. Specifically considered are

e The outflow functional Eqn. (13) with

(7/20; ]y = 3/5]) - (1= 9(7/205 [y — 1/4]))  if y < 3/5

woutﬂow(xay) = {w(7/20, |y _ 3/5|) . (1 — w(’?/QO, |y — 19/20|)) lfy > 3/5

e The solution average functional Eqn. (14).

e The mollified pointwise value functional Eqn. (15) with

Dumotified (7, y) = $(1/20; \/(x — 1/10)2 + (y — 3/5)2) .
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Figure 2.3: Outflow functional for the pure advection problem using the Godunov FVM
with linear reconstruction. Isocontours of the dual problem solution (left) and functional
error versus mesh parameter h (right).

Dual solutions and error estimates are shown in Figs. 2.3-2.5. Each of these figures
shows isocontours for the numerical solution of the dual problem (left) and graphs of the
functional error and the a posteriori error estimates (right). The graphs in Figs. 2.3-2.5
each contain five curves. The first curve depicts the exact functional error |[AM| since the
analytic primal solution is known. Observe the third order superconvergence in the outflow
functional and the mollified pointwise value functional. For each functional the continuous
dual solution @ can be constructed either exactly via Green’s function or to a specified
accuracy using series expansion and/or adaptive quadrature. Using this ®, the second
curve depicts | B(RVug, ® —1y®) — F(® —m®)| which according to (23) should be identical
to the first curve |AM|. This is verified for each functional. Curve number three graphs
|B(Rug, RY®q — @) — F(R)®y — ®y)| so that the effect of numerically approximating the
continuous dual problem is assessed. Some noticable error is observed on coarse meshes
but the performance on the finest meshes is quite acceptable. Curve number four shows
the effect of post-processing of the numerically obtained dual data | B(Rug, RS®y — ®g) —
F(R3®, — ®;)|. Using this post-processed dual data, good accuracy is obtained on all
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Figure 2.4: Integral solution average functional for the pure advection problem using the
Godunov FVM with linear reconstruction. Isocontours of the dual problem solution (left)
and functional error versus mesh parameter h (right).
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Figure 2.5: Mollified pointwise value functional for the pure advection problem using the
Godunov FVM with linear reconstruction. Isocontours of the dual problem solution (left)
and functional error versus mesh parameter h (right).

meshes for all functionals except perhaps the mollified pointwise value functional. In
this latter case, the dual solution consists of a slightly smoothed ridge function that is
not well-resolved on the coarsest meshes using linear or quadratic approximations. Even
so, the estimates in curves three or four seem acceptable as an adaptive mesh stopping
criteria. Curve number five graphs >, - |Br(R{ug, RS®y — ®g) — Fr(R3Py — D) for
each functional. In this approximation, interelement error cancellation does not occur
because of the application of the triangle inequality in Eqn. (29). Consequently, the third
order superconvergence rates seen in the outflow and mollified functionals is absent and
only second order rates of convergence are observed for all functionals. In addition, this
last estimate over predicts the true error by factors of 3-1000 depending of the functional
and the mesh size. Finally, in Fig. 2.6 (left) an adapted mesh obtained for the mollified
pointwise value functional is plotted. The mesh has been adapted using the algorithm
of Sect. 2.5 with quadratically post-processed numerical dual data. Figure 2.6 (right)
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indicates the efficiency of the adaptation procedure by tabulating levels of adaptation,
mesh sizes, and the functional error for each level of adaptation.

Adaptation
Levels #cells | |[AM|
0 400 | 1.9E-3
1 602 | 9.4E-4
2 1232 | 1.7E-5
3 3418 | 5.8E-8

Figure 2.6: Adapted mesh for mollified pointwise value functional (left) and tabulated
mesh sizes for increasing levels of refinement (right).

Burgers’ Equation. u(z,y) : [0,1]* — R with A = (u/2,1)".

div(Au) = 0, in[0,1)?
u(z,0) = 5/4 — 2z,
u(17y) = _3/47
u(0,y) = 5/4 .

As a final example, Burgers’ equation is solved in a unit square as shown in Fig. 2.7. As
mentioned earlier, the Jacobian linearization with post-processing is used as an approxi-
mation of the mean value linearization for the dual problem. Unfortunately, the limiter
function ¥z in Eqn. (39) is highly non-differentiable and has not been linearized in the
present computations. For this problem, error estimates for the solution average functional
Eqn. (14) have been obtained. Isocontours of the dual solution are shown in Fig. 2.8
(left). Tt is observed that monotonicity of the primal shock profile is essential for obtaining
meaningful numerical approximations of the dual problem. Figure 2.8 (right) graphs the
functional error using various approximations. The first curve graphs the exact functional
error |[AM|. Observe that this functional converges at a first order rate presumably due to
the first order accuracy of the primal scheme in the shock region. The second curve graphs
|B(RYug, ® — m9®) — F(® — my®)| but using an analytical @ linearized about the exact
solution. Consequently, this quantity only approximates |[AM| and large differences are
seen on the coarsest mesh. The third curve graphs |B(R%uy, RI®; — ®y) — F(RY®y — @)
using a numerically approximated dual problem. Again large discrepancies are seen on
the coarsest mesh. With mesh refinement the accuracy quickly becomes acceptable. Note
we have not included post-processing of the dual data in these calculations. The fourth
curve graphs Y ..+ |Br(R{ug, R{®g — @) — Fr(R{®y — ®g)|. The results show that this
estimate over predicts the true error by an order of magnitude but show the same rate of
convergence as the true error.
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Figure 2.7: Primal numerical solution R{u, for Burgers’ equation problem using the Go-
dunov FVM with linear reconstruction. Carpet plot in 3D (left) and solution isocontours
in 2D (right).
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Figure 2.8: Integral solution average functional for Burgers’ equation problem. Isocon-
tours of the dual problem (left) and functional error versus mesh spacing parameter h
(right).

2.8.1 Numerical Results for the Euler Equations

In the remainder of this section, further numerical results are computed for the Euler equa-
tions of gasdynamics using the finite volume scheme with linear reconstruction outlined
in the previous section together with Roe flux.

Multi-element Airfoil Flow: To evaluate the accuracy of the Godunov finite volume
error representation formula (23), Ringleb flow (an exact transonic solution of the 2-D
Euler equations obtained via hodograph transformation, see [Chi85]) is computed in the
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Figure 2.9: Ringleb channel geometry. Coarse mesh showing channel geometry with
inflow, outflow and channel walls (left) and density contours of the primal solution (left).

channel geometry shown in Fig. 2.9. To test the error representation formula, the vertical
force component exerted on the channel walls is computed from the functional

My (u) = /F (n-v) Pressure(u) dow , ¥ =(0,1)T .

wall

Figure 2.9 shows density contours for the Ringleb solution. Note that the flow is actually
supersonic for a small region including the right inflow boundary.
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Figure 2.10: Ringleb channel geometry. Contours of the dual density solution (left) and
functional errors (right) for the vertical force component functional.
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Next, the linearized dual problem is computed using the Jacobian linearization (27) and
the error representation formulas computed. Figure 2.10 shows the dual solution for the
vertical force functional and the resulting computed errors. The graphs show essentially
the same features seen for scalar conservation laws, i.e. the dual solution is adequately
computed using the same order method as the primal problem with some small improve-
ment using postprocessing. Application of the triangle inequality in constructing the adap-
tation indicators yields a loss in accuracy of about one order magnitude. To illustrate the
use of these indicators in adaptation, the mollified delta functional (z, = (—.64,1.70)7,
rad = .05) for the energy component of the solution has been implemented

Ms(u) = / Energy(u) 6(z — xo) do , w9 = (—.63,1.70)" .
Q

Using this functional, the corresponding dual problem has been computed and the mesh
adapted using the adaptation algorithm of Sect. 2.5. Figure 2.11 shows the resulting dual
solution and adapted mesh with three levels of refinement (15000 triangles). The adapted
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Figure 2.11: Ringleb channel geometry. Dual energy isocontours solution corresponding
to mollified delta functional (left) and final adapted mesh (3 levels) (right).

mesh shows the upstream dependence on the numerical solution similar to that observed
for the pure advection problem discussed earlier.

Multi-element Airfoil Flow: In the next example, subsonic M = .13 Euler flow over a
multiple component airfoil geometry in computed. In this example, the lift force functional
is used:

My (u) :/ (n-v) Pressure(u) de , ¥ 1 Vg
Pwalt
Figure (2.12) show Mach number contours of the primal solution and dual solution con-
tours associated with the x-component of the momentum. The dual solution, contains
rather large singularities at the trailing edges of each element. Figure 2.13 shows the ini-
tial and final adapted mesh (3 levels refinement). The functional error during each level
of refinement in shown in Fig. 2.14. In estimating the errors used in this figure, a mesh
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Figure 2.12: Multi-element airfoil geometry, M, = .13, = 15.0°. Isomach contours
of primal solution (left) and corresponding contours of the dual x-momentum solution
(right) for the lift functional.
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Figure 2.13: Multiple component airfoil meshes. Original mesh with 10k triangles and
final adapted mesh with 50k triangles (right).

containing over 100k triangle elements has been used to estimate the mesh asympotic lift
value.

Transonic Airfoil Flow: As a final example, transonic Euler flow (Moo = .85, = 2.0°) is
computed over the NACA 0012 airfoil geometry. One again, the lift functional is chosen
for evaluation.

My (u) :/r (n-v) Pressure(u) de , ¥ 1V, .

wall
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Figure 2.14: Multiple component airfoil problem. Functional error versus number of
triangle elements during intermediate levels of refinement.

Figure 2.15 shows isodensity contours of the primal solution and dual iso-density contours
of the dual solution corresponding to the lift functional. As also noted for the multiple
component airfoil, this dual solution contains a singularity at the trailing edge of the
airfoil. In addition, pronounced structures in the dual solution emanate from the leading
edge stagnation point and base of the upper and lower shockwaves. These structures
signify the sensitivity of the lift force to the location of the stagnation point and shock-
waves. The final adapted mesh with 3 levels of refinement shown in Fig. 2.16 shows

L
1

.

Figure 2.15: NACA airfoil geometry, M., = .85, = 2.0°. Isodensity contours of primal
solution (left) and corresponding contours of the dual density solution (right) for the lift
functional.
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Figure 2.16: NACA airfoil, M., = .85, = 2.0°. Final adapted mesh (3 levels refinement).

mesh refinement not achievable from heuristic methods utilizing either local gradient or

local residual information.

N
.vt;& ,%'A‘ﬂ

1
AVAVAZN

RS
SRS
SO
&

o

NOVWAA
K]

29

=
Y
AN

2R
TS
m“%i%
VaVAVAYAY
XN
R

RO

XRKVIANN

R
AN

s

X
KR4
o
N
N
RN
%)

AN
Av#AAVA
k)

VA
AVAY

o
Vv
VAYaY,
AWAVAVAVA
QVAVAV, N
RN
KRR
IR0
DR,

.AN
N>
KR

X
<

VA
N



Bibliography

[Abg94]

[Bar9g]

[Bar99]

[BB73]

[BD02]

[BF90]

[BJ89)

[BL99)

[BL02]

[BLC96]

R. Abgrall. An essentially non-oscillatory reconstruction procedure on finite-
element type meshes. Comp. Meth. Appl. Mech. Engrg., 116:95-101, 1994.

T.J. Barth. Numerical methods for gasdynamic systems on unstructured
meshes. In Kroner, Ohlberger, and Rohde, editors, An Introduction to Re-
cent Developments in Theory and Numerics for Conservation Laws, volume 5
of Lecture Notes in Computational Science and Engineering, pages 195-285.
Springer-Verlag, Heidelberg, 1998.

T.J. Barth. Simplified discontinuous Galerkin methods for systems of con-
servation laws with convex extension. In Cockburn, Karniadakis, and Shu,
editors, Discontinuous Galerkin Methods, volume 11 of Lecture Notes in Com-
putational Science and Engineering. Springer-Verlag, Heidelberg, 1999.

J.P. Boris and D.L. Book. Flux corrected transport: Shasta, a fluid transport
algorithm that works. J. Comp. Phys., 11:38-69, 1973.

T.J. Barth and H. Deconinck(eds). Error estimation and adaptive discretiza-
tion methods in CFD. In Barth and Deconinck, editors, Error Estimation
and Adaptive Discretization Methods in CFD, volume 25 of Lecture Notes in
Computational Science and Engineering. Springer-Verlag, Heidelberg, 2002.

T. J. Barth and P.O. Frederickson. Higher order solution of the Euler equa-
tions on unstructured grids using quadratic reconstruction. Technical Report
90-0013, ATAA, Reno, NV, 1990.

T. J. Barth and D. C. Jespersen. The design and application of upwind
schemes on unstructured meshes. Technical Report 89-0366, ATAA, Reno,
NV, 1989.

T.J. Barth and M.G. Larson. A posteriori error estimation for adaptive dis-

continuous Galerkin approximations of hyperbolic systems. Technical Report
NAS-99-010, NASA Ames Research Center, 1999.

T.J. Barth and M.G. Larson. A-posteriori error estimation for higher or-
der Godunov finite volume methods on unstructured meshes. In Herbin and
Kroner, editors, Finite Volumes for Complex Applications III, pages 41-63.
Hermes Science Pub., London, 2002.

P. Batten, C. Lambert, and D.M. Causon. Positively conservative high-
resolution convection schemes for unstructured elements. Int. J. Numer.
Meth. Engrg., 39:1821-1838, 1996.

60



[BPPS87]

[BRST]

[BROS]

[Caiol]

[CCDDYS]

[CCLY4]

[Cha99]

[Chi85]

[CLOO]

[CLS89]

[CMS0]

[CP84]

[CS97]

[DD8S]

[Del96]

V. Billey, J. Périaux, P. Perrier, and B. Stoufflet. 2-d and 3-d Euler compu-
tations with finite element methods in aerodynamics. volume 1270 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1987.

R. Bank and D.J. Rose. Some error estimates for the box method. STAM J.
Numer. Anal., 24:777-787, 1987.

R. Becker and R. Rannacher. Weighted a posteriori error control in FE meth-
ods. In Proc. ENUMATH-97, Heidelberg. World Scientific Pub., Singapore,
1998.

Z. Cai. On the finite volume element method. Numer. Math., 58:713-735,
1991.

P.-H. Cournede, C., Debiez, and A. Dervieux. A positive MUSCL scheme for
triangulations. Technical Report 3465, Institut National De Recherche En
Informatique Et En Automatique (INRIA), 1998.

B. Cockburn, F. Coquel, and P.G. Lefloch. An error estimate for finite volume
methods for multidimensional conservation laws. Math. Comput., 63:77-103,
1994.

P. Chatzipantelidis. A finite volume method based on the crouzeix-raviart
element for elliptic problems. Numer. Math., 82:409-432, 1999.

G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical
Report AR-211, AGARD, 1985.

S.H. Chou and Q. Li. Error estimates in (2, h! and [* in covolume methods
for elliptic and parabolic problems: a unified approach. Math. Comp., 69:103—
120, 2000.

B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws III: One
dimensional systems. J. Comp. Phys., 84:90-113, 1989.

M. G. Crandall and A. Majda. Monotone difference approximations for scalar
conservation laws. Math. Comp., 34:1-21, 1980.

P. Colella and P. Woodward P. The piecewise parabolic methods for gas-
dynamical simulations. J. Comp. Phys., 54:174-201, 1984.

B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin
method for conservation laws V: Multidimensional systems. Technical Re-
port 201737, Institite for Computer Applications in Science and Engineering
(ICASE), NASA Langley R.C., 1997.

J. Desideri and A. Dervieux. Compressible flow solvers using unstructured
grids, March 1988. von Karman Institute Lecture Series 1988-05.

M. Delanaye. Polynomial Reconstruction Finite Volume Schemes for the Com-
pressible Euler and Navier-Stokes Equations on Unstructured Adaptive Grids.
PhD thesis, University of Liége, Belgium, 1996.

61



[Des86|

[DOE90]

[EEHJ95)

[EGHO00]

[ELL02]

[EMRS92]

[GLLS97]

[Godb9]

[GP99]

[GR91]

[GV83]

[Har83]

[Har89)]

[HC91]

[Her00]

[HHL76]

S. M. Deshpande. On the Maxwellian distribution, symmetric form, and
entropy conservation for the Euler equations. Technical Report TP-2583,
NASA Langley, Hampton, VA, 1986.

L. Durlofsky, S. Osher, and B. Engquist. Triangle based TVD schemes for
hyperbolic conservation laws. Technical Report 90-10, Institite for Computer
Applications in Science and Engineering (ICASE), NASA Langley R.C., 1990.

K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to numerical
methods for differential equations. Acta Numerica, pages 105-158, 1995.

R. Eymard, T. Galluoét, and R. Herbin. Finite Volume Methods, volume 7
of Handbook of Numerical Analysis. North Holland, Amsterdam, 2000.

R.E. Ewing, T. Lin, and Y. Lin. On the accuracy of the finite volume ele-
ment method based on piecwise linear polynomials. STAM J. Numer. Anal.,
39(6):1865-1888, 2002.

B. Einfeldt, C. Munz, P. Roe, and B. Sjogreen. On Godunov-type methods
near low densities. J. Comp. Phys., 92:273-295, 1992.

M. Giles, M. Larson, M. Levenstam, and E. Siili. Adaptive error control for
finite element approximations of the lift and drag coefficients in viscous flow.
preprint NA-97/06, Comlab, Oxford University, 1997.

S. K. Godunov. A finite difference method for the numerical computation of
discontinuous solutions of the equations of fluid dynamics. Mat. Sb., 47:271—
290, 1959.

M. Giles and N.A. Pierce. Improved lift and drag estimates using adjoint
Euler equations. Technical Report 99-3293, ATAA, Reno, NV, 1999.

E. Godlewski and P-A. Raviart. Hyperbolic Systems of Conservation Laws.
Mathematiques & Applications. Ellipses, 1991.

J. D. Goodman and R. J. Le Veque. On the accuracy of stable schemes for
2D conservation laws. Math. Comp., 45(171):15-21, 1985.

A. Harten. High resolution schemes for hyperbolic conservation laws. J.
Comp. Phys., 49:357-393, 1983.

A. Harten. ENO schemes with subcell resolution. J. Comp. Phys., 83:148-184,
1989.

A. Harten and S. Chakravarthy. Multi-dimensional ENO schemes for general
geometries. Technical Report ICASE-91-76, Institite for Computer Applica-
tions in Science and Engineering (ICASE), NASA Langley R.C., 1991.

F. Hermeline. A finite volume method for the approximation of diffusion
operators on distorted meshes. J. Comput. Phys., 160(2):481-499, 2000.

A. Harten, J. M. Hyman, and P. D. Lax. On finite-difference approximations
and entropy conditions for shocks. Comm. Pure and Appl. Math., 29:297-322,
1976.

62



[HLvL83]

[HOECS6]

[HOECST]

[Jam93]

[Jam95]

[JL86]

[JL87]

[JPS6]

[JRBOYS]

[1596]

[Korss]

[Kr597]

[Lax73]

[LeV02]

[Liu93)

A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws. SIAM Rev., 25:35—
61, 1983.

A. Harten, S. Osher, B. Engquist, and S. Chakravarthy. Some results on
uniformly high order accurate essentially non-oscillatory schemes. Appl. Num.
Math., 2:347-377, 1986.

A. Harten, S. Osher, B. Engquist, and S. Chakravarthy. Uniformly high-order
accurate essentially nonoscillatory schemes I11. J. Comp. Phys., 71(2):231-
303, 1987.

A. Jameson. Artificial diffusion, upwind biasing, limiters and their effect on
accuracy and convergence in transonic and hypersonic flows. Technical Report
93-3359, ATAA, Reno, NV, 1993.

A. Jameson. Analysis and design of numerical schemes for gas dynamics.
Technical Report TR 94-15, RIACS, NASA Ames R.C., Moffett Field, CA,
1995.

A. Jameson and P.D. Lax. Conditions for the construction of multipoint
variation diminishing difference schemes. Appl. Numer. Math., 2(3-5):235—
345, 1986.

A. Jameson and P.D. Lax. Corrigendum: Conditions for the construction

of multipoint variation diminishing difference schemes. Appl. Numer. Math.,
3(3):289, 1987.

C. Johnson and J. Pitkdranta. An analysis of the discontinuous Galerkin
method for a scalar hyperbolic equation. Math. Comp., 46:1-26, 1986.

C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrodynamics
stability theory: towards error control in CFD. SIAM J. Numer. Anal.,
32:1058-1079, 1995.

G. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes.
J. Comp. Phys., 126:202-228, 1996.

B. Koren. Upwind schemes for the Navier-Stokes equations. In Pro-
ceedings of the Second International Conference on Hyperbolic Problems.
Vieweg:Braunschweig, 1988.

D. Kroner. Numerical Schemes for Conservation Laws. Wiley—Teubner, 1997.

P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical
Theory of Shock Waves. STAM, Philadelphia, Penn., 1973.

R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

X.-D. Liu. A maximum principle satisfying modification of triangle based
adaptive stencils for the solution of scalar hyperbolic conservation laws. STAM
J. Numer. Anal., 30:701-716, 1993.

63



[LMV96]
[LS93]

[OP99]

[0S82]
[Osh84]
[Pet91]

[PO99)

[PPPY7]

[RHT73)

[Roe81]

[RSSS]

[S98]

[Shu99]

[SO88]

R.D. Lazarov, [.D. Michev, and P.S. Vassilevsky. Finite volume methods for
convection-diffusion problems. SIAM J. Numer. Anal., 33:31-35, 1996.

M.S. Liou and C.J. Steffen. A new flux-splitting scheme. J. Comp. Phys.,
107:23-39, 1993.

J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity
for the finite element method. Technical Report 99-015, TICAM, U. Texas,
Austin, TX, 1999.

S. Osher and F. Solomon. Upwind difference schemes for hyperbolic systems
of conservation laws. Math. Comp., 38(158):339-374, 1982.

S. Osher. High resolution schemes and the entropy condition. SIAM J. Numer.
Anal., 21(5):955-984, 1984.

T. Peterson. A note on the convergence of the discontinuous Galerkin method
for a scalar hyperbolic equation. SIAM J. Numer. Anal., 28(1):133-140, 1991.

S. Prudhomme and J.T. Oden. On goal-oriented error estimation for elliptic
problems: application to the control of pointwise errors. Comp. Meth. Appl.
Mech. and Eng., pages 313-331, 1999.

M. Parashivoiu, J. Peraire, and A. Patera. A posteriori finite element bounds
for linear-functional outputs of elliptic partial differential equations. Comput.
Meth. Appl. Mech. Engrg., 150:289-312, 1997.

W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport
equation. Technical Report LA-UR-73-479, Los Alamos National Laboratory,
Los Alamos, New Mexico, 1973.

P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. J. Comput. Phys., 43:357-372, 1981.

P. Rostand and B. Stoufflet. TVD schemes to compute compressible viscous
flows on unstructured meshes. In Proceedings of the Second International
Conference on Hyperbolic Problems. Vieweg:Braunschweig, 1988.

E. Siili. A posteriori error analysis and adaptivity for finite element approx-
imations of hyperbolic problems. In Kroner, Ohlberger, and Rohde, editors,
An Introduction to Recent Developments in Theory and Numerics for Con-
servation Laws, volume 5 of Lecture Notes in Computational Science and
Engineering, pages 122-194. Springer-Verlag, Heidelberg, 1998.

C.-W. Shu. Discontinuous Galerkin methods for convection-dominated prob-
lems. In Barth and Deconinck, editors, High-Order Discretization Methods in
Computational Physics, volume 9 of Lecture Notes in Computational Science
and Engineering. Springer-Verlag, Heidelberg, 1999.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-
oscillatory shock-capturing scheme. J. Comp. Phys., 77:439-471, 1988.

64



[Son97]

[Son98|

[Spe87]

[Siil91]

[SW81]

[Swed4|

[Van93]

[VHMDOS]

[VvL79]

[vL82]

[vL85]

[Wie94]

(27.92]

T. Sonar. On the construction of essentially non-oscillatory finite volume ap-
proximations to hyperbolic conservation laws on general triangulations: Poly-
nomial recovery, accuracy, and stencil selection. Comput. Meth. Appl. Mech.
Engrg., 140:157-181, 1997.

T. Sonar. On families of pointwise opitimal finite volume ENO approxima-
tions. SIAM J. Numer. Anal., 35(6):2350-2379, 1998.

S.P. Spekreijse. Multigrid solution of monotone second-order discretizations
of hyperbolic conservation laws. Math. Comp., 49:135-155, 1987.

E. Siili. Convergence of finite volume schemes for Poisson’s equation on
nonuniform meshes. SIAM J. Numer. Anal., 28:1419-1430, 1991.

J.L. Steger and R.F. Warming. Flux vector splitting of the inviscid gas-
dynamic equations with application to finite difference methods. J. Comp.
Phys., 40:263—-293, 1981.

P.K. Sweby. High resolution schemes using flux limiters for hyperbolic con-
servation laws. SIAM J. Numer. Anal., 21(5):995-1011, 1984.

P. Vankeirsblick. Algorithmic Developments for the Solution of Hyperbolic
Conservation Laws on Adaptive Unstructured Grids. PhD thesis, Katholieke
Universiteit Leuven, Belgium, 1993.

C. Viozat, C. Held, K. Mer, and A. Dervieux. On vertex-center unstruc-
tured finite-volume methods for stretched anisotropic triangulations. Tech-
nical Report 3464, Institut National De Recherche En Informatique Et En
Automatique (INRIA), 1998.

B. van Leer. Towards the ultimate conservative difference schemes V. A second
order sequel to Godunov’s method. J. Comp. Phys., 32:101-136, 1979.

B. van Leer. Flux-vector splitting for the Euler equations. Technical Report
ICASE-82-30, Institite for Computer Applications in Science and Engineering
(ICASE), NASA Langley R.C., 1982.

B. van Leer. Upwind-difference schemes for aerodynamics problems governed
by the Euler equations. volume 22 of Lectures in Applied Mathematics. AMS
Pub., Providence, Rhode Island, 1985.

M. Wierse. Higher Order Upwind Scheme on Unstructured Grids for the
Compressible Euler Equations in Time Dependent Geometries in 3D. PhD
thesis, University of Freiburg, Germany, 1994.

0O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and a
posteriori error estimates. Part I: the recovery technique. Int. J. Numer.
Meth. Engrg., 33:1331-1364, 1992.

65



